cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174804 a(n) = n*ceiling(sqrt(n))*floor(sqrt(n)).

Original entry on oeis.org

0, 1, 4, 6, 16, 30, 36, 42, 48, 81, 120, 132, 144, 156, 168, 180, 256, 340, 360, 380, 400, 420, 440, 460, 480, 625, 780, 810, 840, 870, 900, 930, 960, 990, 1020, 1050, 1296, 1554, 1596, 1638, 1680, 1722, 1764, 1806, 1848, 1890, 1932, 1974, 2016, 2401, 2800
Offset: 0

Views

Author

Keywords

Comments

As a(n^2) = n^4, A000583 is a subsequence. - Bernard Schott, Feb 01 2023

Crossrefs

Programs

  • Mathematica
    f[n_]:=n*Floor[Sqrt[n]]*Ceiling[Sqrt[n]];Table[f[n],{n,0,5!}]
  • PARI
    a(n) = n*sqrtint(n)*ceil(sqrt(n)); \\ Michel Marcus, Feb 14 2018
    
  • Python
    from math import isqrt
    def A174804(n): return n*(n if (k:=(m:=isqrt(n))**2)==n else k+m) # Chai Wah Wu, Jul 29 2022

Formula

a(n) = n*A000196(n)*A003059(n). - Michel Marcus, Feb 14 2018

A174805 n+ceiling[sqrt(n)]+floor[sqrt(n)].

Original entry on oeis.org

0, 3, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=n+Floor[Sqrt[n]]+Ceiling[Sqrt[n]];Table[f[n],{n,0,5!}]
Showing 1-2 of 2 results.