cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174808 A transform of the large Schroeder numbers A006318.

Original entry on oeis.org

1, 2, 8, 34, 162, 820, 4338, 23694, 132612, 756594, 4384022, 25729336, 152627730, 913674362, 5512542128, 33486653154, 204639278346, 1257199799116, 7760098104882, 48102326710998, 299309479778956, 1868853597670754
Offset: 0

Views

Author

Paul Barry, Mar 29 2010

Keywords

Comments

Hankel transform is A174809.

Examples

			G.f. = 1 + 2*x + 8*x^2 + 34*x^3 + 162*x^4 + 820*x^5 + 4338*x^6 + ...
		

Crossrefs

Cf. A174809.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2-Sqrt(1-6*x-5*x^2+2*x^3+x^4))/(2*x*(1+x)))); // G. C. Greubel, Sep 22 2018
  • Maple
    A174808 := proc(n)
        add(binomial(k,n-k)*A006318(k),k=0..n) ;
    end proc: # R. J. Mathar, Feb 10 2015
  • Mathematica
    CoefficientList[Series[(1-x-x^2 -Sqrt[1-6*x-5*x^2+2*x^3+x^4])/(2*x*(1 + x)), {x, 0, 30}], x] (* G. C. Greubel, Sep 22 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x-x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(2*x*(1+x))) \\ G. C. Greubel, Sep 22 2018
    

Formula

G.f.: (1-x-x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(2*x*(1+x)).
G.f.: 1/(1-2x(1+x)/(1-x(1+x)/(1-2x(1+x)/(1-x(1+x)/(1-...))))) (continued fraction).
a(n) = Sum_{k=0..n} C(k,n-k)*A006318(k).
G.f.: 1 / (1 - (x + x^2)*(1 + 1 / (1 - (x + x^2)*(1 + 1 / ...)))). - Michael Somos, Mar 30 2014
Conjecture: (n+1)*a(n) +(-5*n+4)*a(n-1) +(-11*n+13)*a(n-2) +3*(-n+1)*a(n-3) +3*(n-4)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Feb 10 2015