A174810
A transform of the little Schroeder numbers A001003.
Original entry on oeis.org
1, 1, 4, 17, 81, 410, 2169, 11847, 66306, 378297, 2192011, 12864668, 76313865, 456837181, 2756271064, 16743326577, 102319639173, 628599899558, 3880049052441, 24051163355499, 149654739889478, 934426798835377
Offset: 0
-
CoefficientList[Series[(1+x+x^2-Sqrt[1-6*x-5*x^2+2*x^3+x^4])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 30 2014 *)
-
x='x+O('x^66); Vec((1+x+x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(4*x*(1+x))) \\ Joerg Arndt, Jan 30 2014
A178628
A (1,1) Somos-4 sequence associated to the elliptic curve E: y^2 - x*y - y = x^3 + x^2 + x.
Original entry on oeis.org
1, 1, -1, -4, -3, 19, 67, -40, -1243, -4299, 25627, 334324, 627929, -29742841, -372632409, 1946165680, 128948361769, 1488182579081, -52394610324649, -2333568937567764, -5642424912729707, 3857844273728205019
Offset: 1
(p, q) Somos-4 sequences:
A171422,
A174168,
A174170,
A174404,
A174809,
A174811,
A174882,
A178075,
A178077,
A178081,
A178079,
A178376,
A178377,
A178384,
A178417,
A178418,
A178621,
A178622,
A178624,
A178625,
A178627,
A178628,
A178644,
A184019,
A184121,
A188313,
A188315,
A352625.
-
I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
-
RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[1] == 1, a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,30}] (* G. C. Greubel, Sep 18 2018 *)
-
a(n)=local(E,z);E=ellinit([ -1,1,-1,1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))
-
m=30; v=concat([1,1,-1,-4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
-
{a(n) = subst(elldivpol(ellinit([-1, 1, -1, 1, 0]), n), x ,0)}; /* Michael Somos, Jul 05 2024 */
-
@CachedFunction
def a(n): # a = A178628
if n<5: return (0,1,1,-1,-4)[n]
else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 05 2024
Showing 1-2 of 2 results.
Comments