cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174850 Quintisection A061037(5*n-2).

Original entry on oeis.org

0, 5, 15, 165, 20, 525, 195, 1085, 90, 1845, 575, 2805, 210, 3965, 1155, 5325, 380, 6885, 1935, 8645, 600, 10605, 2915, 12765, 870, 15125, 4095, 17685, 1190, 20445, 5475, 23405, 1560, 26565, 7055, 29925, 1980, 33485, 8835, 37245, 2450
Offset: 0

Views

Author

Paul Curtz, Dec 01 2010

Keywords

Comments

All entries are multiples of 5. Like A061037(n+2), the (2k+1)-sections A061037((2*k+1)*n-2) are multiples of 2k+1; see A165248, A165943.
The sequence contains 4 interlaced second-order polynomials: a(4n) = 5n*(5n-1), a(4n+1) = 5*(4n+1)*(20n+1), a(4n+2)= 5*(2n+1)*(10n+3), a(4n+3)= 5*(4n+3)*(20n+11). - R. J. Mathar, Feb 10 2011

Programs

  • Magma
    [ Numerator(1/4-1/(5*n-2)^2): n in [0..40] ]; // Bruno Berselli, Feb 10 2011
    
  • Mathematica
    f[n_] := n/GCD[n, 4]; Table[ f[n] f[n + 4], {n, -4, 200, 5}] (* Robert G. Wilson v, Feb 03 2011 *)
  • PARI
    vector(50, n, n--; numerator( 1/4 - 1/(5*n-2)^2 )) \\ G. C. Greubel, Sep 19 2018

Formula

a(n) = numerator( 1/4 - 1/(5*n-2)^2 ).
From R. J. Mathar, Feb 10 2011: (Start)
a(n) = +3*a(n-4) -3*a(n-8) +a(n-12).
G.f. ( -5*x*(1+3*x+33*x^2+4*x^3+102*x^4+30*x^5+118*x^6+6*x^7+57*x^8 +7*x^9+9*x^10) )/( (x-1)^3*(1+x)^3*(x^2+1)^3 ). (End)
a(n) = 5*n*(5*n-4)*(37-27*(-1)^n-3*(-i)^n-3*i^n)/64, where i=sqrt(-1). - Bruno Berselli, Feb 10 2011