A174850 Quintisection A061037(5*n-2).
0, 5, 15, 165, 20, 525, 195, 1085, 90, 1845, 575, 2805, 210, 3965, 1155, 5325, 380, 6885, 1935, 8645, 600, 10605, 2915, 12765, 870, 15125, 4095, 17685, 1190, 20445, 5475, 23405, 1560, 26565, 7055, 29925, 1980, 33485, 8835, 37245, 2450
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Magma
[ Numerator(1/4-1/(5*n-2)^2): n in [0..40] ]; // Bruno Berselli, Feb 10 2011
-
Mathematica
f[n_] := n/GCD[n, 4]; Table[ f[n] f[n + 4], {n, -4, 200, 5}] (* Robert G. Wilson v, Feb 03 2011 *)
-
PARI
vector(50, n, n--; numerator( 1/4 - 1/(5*n-2)^2 )) \\ G. C. Greubel, Sep 19 2018
Formula
a(n) = numerator( 1/4 - 1/(5*n-2)^2 ).
From R. J. Mathar, Feb 10 2011: (Start)
a(n) = +3*a(n-4) -3*a(n-8) +a(n-12).
G.f. ( -5*x*(1+3*x+33*x^2+4*x^3+102*x^4+30*x^5+118*x^6+6*x^7+57*x^8 +7*x^9+9*x^10) )/( (x-1)^3*(1+x)^3*(x^2+1)^3 ). (End)
a(n) = 5*n*(5*n-4)*(37-27*(-1)^n-3*(-i)^n-3*i^n)/64, where i=sqrt(-1). - Bruno Berselli, Feb 10 2011
Comments