A174905 Numbers with no pair (d,e) of divisors such that d < e < 2*d.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 76, 79, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 101, 103, 106
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Hartmut F. W. Hoft, Proof that this sequence equals union of A241008 and A241010
Crossrefs
Programs
-
Haskell
a174905 n = a174905_list !! (n-1) a174905_list = filter ((== 0) . a174903) [1..] -- Reinhard Zumkeller, Sep 29 2014
-
Maple
filter:= proc(n) local d,q; d:= numtheory:-divisors(n); min(seq(d[i+1]/d[i],i=1..nops(d)-1)) >= 2 end proc: select(filter, [$1..1000]); # Robert Israel, Aug 08 2014
-
Mathematica
(* it suffices to test adjacent divisors *) a174905[n_] := Module[{d = Divisors[n]}, ! Apply[Or, Map[2 #[[1]] > #[[2]] &, Transpose[{Drop[d, -1], Drop[d, 1]}]]]] (* Hartmut F. W. Hoft, Aug 07 2014 *) Select[Range[106], !MatchQ[Divisors[#], {_, d_, e_, _} /; e < 2d]& ] (* Jean-François Alcover, Jan 31 2018 *)
Comments