A174922 Lesser of twin primes p1 such that p1+(p2^2-p1^2) and p2+(p2^2-p1^2) are prime numbers.
5, 11, 29, 461, 599, 659, 809, 1019, 1289, 2027, 2141, 2309, 2339, 2801, 3329, 3557, 3581, 4127, 4421, 4547, 5879, 6761, 10091, 10457, 10709, 13829, 15329, 18911, 20231, 21839, 23561, 23909, 26249, 26879, 27581, 27689, 27917, 28109, 30491
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={};Do[p1=Prime[n];p2=p1+2;If[PrimeQ[p2]&&PrimeQ[p1+(p2^2-p1^2)]&&PrimeQ[p2+(p2^2-p1^2)],AppendTo[lst,p1]],{n,8!}];lst prQ[{a_,b_}]:=Module[{c=b^2-a^2},AllTrue[{a+c,b+c},PrimeQ]]; Transpose[ Select[ Select[ Partition[Prime[Range[5000]],2,1],#[[2]]-#[[1]] == 2&], prQ]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 12 2015 *)
Comments