cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174955 Lesser of twin primes p1 such that p1*p2+-6 are prime numbers.

Original entry on oeis.org

5, 11, 1061, 2111, 3371, 3851, 5867, 9461, 12251, 21491, 22037, 22481, 24917, 26681, 28277, 32141, 42641, 43607, 48731, 56477, 59417, 59627, 67271, 67757, 70487, 77417, 86531, 87221, 91127, 104147, 113621, 115151, 116687, 119291, 121577
Offset: 1

Views

Author

Keywords

Comments

5*7=35+-6 -> primes,..

Crossrefs

Programs

  • Mathematica
    lst={};Do[p1=Prime[n];p2=p1+2;If[PrimeQ[p2]&&PrimeQ[p1*p2+6]&&PrimeQ[p1*p2-6],(*Print[p1];*)AppendTo[lst,p1]],{n,8!}];lst

A174957 Lesser of twin primes p1 such that p1*p2-4 and p1*p2-6 are twin prime numbers.

Original entry on oeis.org

5, 11, 1031, 2711, 3851, 4421, 5867, 8837, 10067, 12041, 12251, 12611, 17957, 21491, 21521, 22037, 22481, 23537, 32141, 32411, 42641, 48311, 48731, 49367, 50261, 53231, 60167, 72167, 77417, 80147, 80447, 81047, 87641, 88337, 90527, 95231
Offset: 1

Views

Author

Keywords

Comments

5*7=35; 35-4=31; 35-6=29; 29,31 twin primes

Crossrefs

Programs

  • Mathematica
    lst={};Do[p1=Prime[n];p2=p1+2;If[PrimeQ[p2]&&PrimeQ[p1*p2-4]&&PrimeQ[p1*p2-6],(*Print[p1];*)AppendTo[lst,p1]],{n,8!}];lst
    ltp[{a_,b_}]:=b-a==2&&AllTrue[a*b-{4,6},PrimeQ]; Select[Partition[Prime[ Range[ 10000]],2,1],ltp][[All,1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 07 2017 *)

A341215 Primes p such that 2*p+3*q and 3*p+2*q are prime, where q is the next prime after p.

Original entry on oeis.org

5, 7, 11, 19, 29, 31, 37, 43, 53, 113, 127, 163, 173, 199, 257, 271, 317, 353, 397, 439, 457, 461, 557, 599, 659, 757, 809, 991, 997, 1019, 1069, 1129, 1289, 1327, 1439, 1447, 1549, 1621, 1733, 1747, 1759, 1831, 1913, 2027, 2113, 2141, 2153, 2309, 2339, 2357, 2383, 2423, 2473, 2663, 2741, 2801
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 06 2021

Keywords

Examples

			a(3) = 11 is a term because the next prime is 13 and 2*11+3*13 = 61 and 3*11+2*13 = 59 are prime.
		

Crossrefs

Contains A174922.

Programs

  • Maple
    R:=  NULL: count:= 0:
    q:= 2:
    while count < 100 do
      p:= q; q:= nextprime(p);
      if isprime(2*p+3*q) and isprime(3*p+2*q) then
        count:= count+1; R:= R, p
      fi
    od:
    R;
  • Mathematica
    Select[Partition[Prime[Range[500]],2,1],AllTrue[{2#[[1]]+3#[[2]],3#[[1]]+2#[[2]]},PrimeQ]&][[;;,1]] (* Harvey P. Dale, Jun 11 2025 *)
  • PARI
    isok(p) = isprime(p) && (q=nextprime(p+1)) && isprime(2*p+3*q) && isprime(3*p+2*q); \\ Michel Marcus, Feb 07 2021

A341217 a(k) is the lesser of the first pair of twin primes that starts a chain of k pairs of twin primes (p(1),p(1)+2), ..., (p(k),p(k)+2) where p(j+1) = 5*p(j)+4.

Original entry on oeis.org

3, 11, 5, 1720949, 22362444257, 57703877539769
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 06 2021

Keywords

Comments

a(5) > 10^8 if it exists.

Examples

			3 and 5 are twin primes, but 5*3+4 = 19 and 21 are not twin primes.
11 and 13 are twin primes, 5*11+4 = 59 and 61 are twin primes, but 5*59+4 = 299 and 301 are not twin primes.
5 and 7 are twin primes, 5*5+4 = 29 and 31 are twin primes, 5*29+4 = 149 and 151 are twin primes, but 5*149+4 = 749 and 751 are not twin primes.
1720949 and 1720951 are twin primes, 5*1720949+4 = 8604749 and 8604751 are twin primes, 5*8604749+4 = 43023749 and 43023751 are twin primes,
5*8604749+4 = 215118749 and 215118751 are twin primes, 5*1075593749+4 = 1075593749 and 1075593751 are not twin primes.
		

Crossrefs

Programs

  • Maple
    V:= [3,0,0,0]:
    count:= 1:
    for p from 5 by 6 while count < 4 do
      if isprime(p) and isprime(p+2) then
        ct:= 1:
        q:= p;
        do
          q:= 5*q+4;
          if not (isprime(q) and isprime(q+2)) then break fi;
          ct:= ct+1;
        od;
        if V[ct] = 0 then V[ct]:= p; count:= count+1; fi;
      fi
    od:
    V;

Extensions

a(5) from Martin Ehrenstein, Feb 07 2021
a(6) from Martin Ehrenstein, Feb 10 2021
Showing 1-4 of 4 results.