cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174928 Partial sums of A174927.

Original entry on oeis.org

1, 65, 66, 130, 131, 195, 196, 260, 261, 325, 326, 390, 391, 455, 456, 520, 521, 585, 586, 650, 651, 715, 716, 780, 781, 845, 846, 910, 911, 975, 976, 1040, 1041, 1105, 1106, 1170, 1171, 1235, 1236, 1300, 1301, 1365, 1366, 1430, 1431, 1495, 1496, 1560
Offset: 0

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Comments

First differences of A174929.

Crossrefs

Cf. A174927 (repeat 1, 64), A174929.

Programs

  • Magma
    T:=&cat[ [1, 64]: n in [0..23] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T] ];
    [ n le 2 select 64*n-63 else Self(n-2)+65: n in [1..48] ];

Formula

a(n) = (67+130*n-63*(-1)^n)/4.
a(n) = a(n-2)+65 for n > 1; a(0) = 1, a(1) = 65.
a(n) = ((n+1) mod 2) + 65*floor((n+1)/2).
G.f.: (1+64*x)/((1-x)^2*(1+x)).

A174930 Decimal expansion of (4+sqrt(17))/8.

Original entry on oeis.org

1, 0, 1, 5, 3, 8, 8, 2, 0, 3, 2, 0, 2, 2, 0, 7, 5, 6, 8, 7, 2, 7, 6, 7, 6, 2, 3, 1, 9, 9, 6, 7, 5, 9, 6, 2, 8, 1, 4, 3, 3, 9, 9, 9, 0, 3, 1, 7, 1, 7, 0, 2, 5, 5, 4, 2, 9, 9, 8, 2, 9, 1, 9, 6, 6, 3, 6, 8, 6, 9, 2, 9, 3, 2, 9, 2, 2, 0, 2, 6, 9, 9, 1, 9, 8, 4, 8, 2, 9, 5, 6, 3, 5, 1, 3, 3, 5, 5, 3, 7, 0, 8, 5, 5, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Comments

Continued fraction expansion of (4+sqrt(17))/8 is A174927.

Examples

			(4+sqrt(17))/8 = 1.01538820320220756872...
		

Crossrefs

Cf. A010473 (decimal expansion of sqrt(17)), A174927 (repeat 1, 64).

A174929 Partial sums of A174928.

Original entry on oeis.org

1, 66, 132, 262, 393, 588, 784, 1044, 1305, 1630, 1956, 2346, 2737, 3192, 3648, 4168, 4689, 5274, 5860, 6510, 7161, 7876, 8592, 9372, 10153, 10998, 11844, 12754, 13665, 14640, 15616, 16656, 17697, 18802, 19908, 21078, 22249, 23484, 24720, 26020
Offset: 0

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Crossrefs

Cf. A174928 (partial sums of A174927), A174927 (repeat 1, 64).

Programs

  • Magma
    T:=&cat[ [1, 64]: n in [0..19] ]; U:=[ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T] ]; [ n eq 1 select U[1] else Self(n-1)+U[n]: n in [1..#U] ];
    [ n eq 1 select 1 else n le 3 select 66*(n-1) else Self(n-1)+Self(n-2)-Self(n-3)+65: n in [1..40] ];
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{1,66,132,262},60] (* Harvey P. Dale, Jul 12 2021 *)

Formula

a(n) = (71+264*n+130*n^2-63*(-1)^n)/8.
a(n) = a(n-1)+a(n-2)-a(n-3)+65 for n > 2; a(0) = 1, a(1) = 66, a(2) = 132.
G.f.: (1+64*x)/((1-x)^3*(1+x)).
Showing 1-3 of 3 results.