cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174929 Partial sums of A174928.

Original entry on oeis.org

1, 66, 132, 262, 393, 588, 784, 1044, 1305, 1630, 1956, 2346, 2737, 3192, 3648, 4168, 4689, 5274, 5860, 6510, 7161, 7876, 8592, 9372, 10153, 10998, 11844, 12754, 13665, 14640, 15616, 16656, 17697, 18802, 19908, 21078, 22249, 23484, 24720, 26020
Offset: 0

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Crossrefs

Cf. A174928 (partial sums of A174927), A174927 (repeat 1, 64).

Programs

  • Magma
    T:=&cat[ [1, 64]: n in [0..19] ]; U:=[ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T] ]; [ n eq 1 select U[1] else Self(n-1)+U[n]: n in [1..#U] ];
    [ n eq 1 select 1 else n le 3 select 66*(n-1) else Self(n-1)+Self(n-2)-Self(n-3)+65: n in [1..40] ];
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{1,66,132,262},60] (* Harvey P. Dale, Jul 12 2021 *)

Formula

a(n) = (71+264*n+130*n^2-63*(-1)^n)/8.
a(n) = a(n-1)+a(n-2)-a(n-3)+65 for n > 2; a(0) = 1, a(1) = 66, a(2) = 132.
G.f.: (1+64*x)/((1-x)^3*(1+x)).

A174927 Periodic sequence: Repeat 1, 64.

Original entry on oeis.org

1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64, 1, 64
Offset: 0

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Comments

Interleaving of A000012 and 2*A010871.
Also continued fraction expansion of (4+sqrt(17))/8.
First differences of A174928.

Crossrefs

Cf. A000012 (all 1's sequence), A010871 (all 32's sequence), A010689 (repeat 1, 8), A174930 (decimal expansion of (4+sqrt(17))/8), A174928.

Programs

  • Magma
    &cat[ [1, 64]: n in [0..41] ];
    [ (65-63*(-1)^n)/2: n in [0..83] ];
  • Mathematica
    PadRight[{},100,{1,64}] (* Harvey P. Dale, Jun 16 2013 *)

Formula

a(n) = (65-63*(-1)^n)/2.
a(n) = a(n-2) for n > 1; a(0) = 0, a(1) = 64.
a(n) = -a(n-1)+65 for n > 0; a(0) = 1.
a(n) = ((n+1) mod 2)+64*(n mod 2).
G.f.: (1+64*x)/((1-x)*(1+x)).
Showing 1-2 of 2 results.