A174929 Partial sums of A174928.
1, 66, 132, 262, 393, 588, 784, 1044, 1305, 1630, 1956, 2346, 2737, 3192, 3648, 4168, 4689, 5274, 5860, 6510, 7161, 7876, 8592, 9372, 10153, 10998, 11844, 12754, 13665, 14640, 15616, 16656, 17697, 18802, 19908, 21078, 22249, 23484, 24720, 26020
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 1).
Programs
-
Magma
T:=&cat[ [1, 64]: n in [0..19] ]; U:=[ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T] ]; [ n eq 1 select U[1] else Self(n-1)+U[n]: n in [1..#U] ]; [ n eq 1 select 1 else n le 3 select 66*(n-1) else Self(n-1)+Self(n-2)-Self(n-3)+65: n in [1..40] ];
-
Mathematica
LinearRecurrence[{2,0,-2,1},{1,66,132,262},60] (* Harvey P. Dale, Jul 12 2021 *)
Formula
a(n) = (71+264*n+130*n^2-63*(-1)^n)/8.
a(n) = a(n-1)+a(n-2)-a(n-3)+65 for n > 2; a(0) = 1, a(1) = 66, a(2) = 132.
G.f.: (1+64*x)/((1-x)^3*(1+x)).
Comments