cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A338576 a(n) = n * pod(n) where pod(n) = the product of divisors of n (A007955).

Original entry on oeis.org

1, 4, 9, 32, 25, 216, 49, 512, 243, 1000, 121, 20736, 169, 2744, 3375, 16384, 289, 104976, 361, 160000, 9261, 10648, 529, 7962624, 3125, 17576, 19683, 614656, 841, 24300000, 961, 1048576, 35937, 39304, 42875, 362797056, 1369, 54872, 59319, 102400000, 1681
Offset: 1

Views

Author

Jaroslav Krizek, Nov 03 2020

Keywords

Examples

			a(6) = 6 * pod(6) = 6 * 36 = 216.
		

Crossrefs

Cf. A007955 (pod(n)), A007956 (pod(n) / n).
Similar sequences: A038040 (n * tau(n)), A064987 (n * sigma(n)).
Cf. A174935 (partial sums of a(n)).

Programs

  • Magma
    [n * &*Divisors(n): n in [1..100]]
    
  • Mathematica
    a[n_] := n^(1 + DivisorSigma[0, n]/2); Array[a, 50] (* Amiram Eldar, Nov 03 2020 *)
  • PARI
    a(n) = n*vecprod(divisors(n)); \\ Michel Marcus, Nov 03 2020
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A338576(n): return (isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2+1) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = n * A007955(n) = n^2 * A007956(n).
a(n) = lcm(n, pod(n)) * gcd(n, pod(n)).
a(p) = p^2 for p = primes (A000040).
Showing 1-1 of 1 results.