A174939 a(n) = Sum_{k<=n} A007955(k) * A007955(k) = Sum_{k<=n} A007955(k)^2, where A007955(m) = product of divisors of m.
1, 5, 14, 78, 103, 1399, 1448, 5544, 6273, 16273, 16394, 3002378, 3002547, 3040963, 3091588, 4140164, 4140453, 38152677, 38153038, 102153038, 102347519, 102581775, 102582304, 110177896480, 110177912105, 110178369081, 110178900522, 110660790826, 110660791667
Offset: 1
Keywords
Examples
For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(3)^2 + b(4)^2 = 1^2 + 2^2 + 3^2 + 8^2 = 78.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Accumulate@ Array[#^DivisorSigma[0, #] &, 29] (* Michael De Vlieger, May 03 2022 *)
-
PARI
a(n) = sum(k=1, n, k^numdiv(k)); \\ Michel Marcus, May 03 2022
-
Python
from sympy import divisor_count from itertools import count, islice def agen(): an = 1 for k in count(2): yield an an += k**divisor_count(k) print(list(islice(agen(), 29))) # Michael S. Branicky, May 03 2022
Formula
a(n) = Sum_{k=1..n} A062758(k). - Michel Marcus, May 03 2022
Extensions
a(27) and beyond from Michael S. Branicky, May 03 2022