cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174939 a(n) = Sum_{k<=n} A007955(k) * A007955(k) = Sum_{k<=n} A007955(k)^2, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 5, 14, 78, 103, 1399, 1448, 5544, 6273, 16273, 16394, 3002378, 3002547, 3040963, 3091588, 4140164, 4140453, 38152677, 38153038, 102153038, 102347519, 102581775, 102582304, 110177896480, 110177912105, 110178369081, 110178900522, 110660790826, 110660791667
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(3)^2 + b(4)^2 = 1^2 + 2^2 + 3^2 + 8^2 = 78.
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[#^DivisorSigma[0, #] &, 29] (* Michael De Vlieger, May 03 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^numdiv(k)); \\ Michel Marcus, May 03 2022
    
  • Python
    from sympy import divisor_count
    from itertools import count, islice
    def agen():
        an = 1
        for k in count(2):
            yield an
            an += k**divisor_count(k)
    print(list(islice(agen(), 29))) # Michael S. Branicky, May 03 2022

Formula

a(n) = Sum_{k=1..n} A062758(k). - Michel Marcus, May 03 2022

Extensions

a(27) and beyond from Michael S. Branicky, May 03 2022