A174940 a(n) = Sum_{d|n} A007955(d) * A008683(n/d) = Sum_{d|n} A007955(d) * mu(n/d), where A007955(m) = number of divisors of m.
1, 1, 2, 6, 4, 32, 6, 56, 24, 94, 10, 1686, 12, 188, 218, 960, 16, 5772, 18, 7894, 432, 472, 22, 329992, 120, 662, 702, 21750, 28, 809648, 30, 31744, 1076, 1138, 1214, 10070172, 36, 1424, 1506, 2551944, 40, 3111034, 42, 84694, 90876, 2092, 46, 254471232, 336, 124780
Offset: 1
Keywords
Examples
For n = 4, A007955(n) = b(n): a(4) = b(1)*mu(4/1) + b(2)*mu(4/2) + b(4)*mu(4/4) = 1*0 + 2*(-1) + 8*1 = 6.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[&+[&*Divisors(d)*MoebiusMu(n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Jan 05 2020
-
Mathematica
a[n_] := Sum[ MoebiusMu[n/d] * Times @@ Divisors[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, 30} ] (* Jean-François Alcover, Jan 09 2013 *)
-
PARI
a(n)={sumdiv(n, d, vecprod(divisors(d))*moebius(n/d))} \\ Andrew Howroyd, Jan 05 2020
Formula
Moebius transform of A007955. - Andrew Howroyd, Jan 05 2020
Extensions
Terms a(31) and beyond from Andrew Howroyd, Jan 05 2020