cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174940 a(n) = Sum_{d|n} A007955(d) * A008683(n/d) = Sum_{d|n} A007955(d) * mu(n/d), where A007955(m) = number of divisors of m.

Original entry on oeis.org

1, 1, 2, 6, 4, 32, 6, 56, 24, 94, 10, 1686, 12, 188, 218, 960, 16, 5772, 18, 7894, 432, 472, 22, 329992, 120, 662, 702, 21750, 28, 809648, 30, 31744, 1076, 1138, 1214, 10070172, 36, 1424, 1506, 2551944, 40, 3111034, 42, 84694, 90876, 2092, 46, 254471232, 336, 124780
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)*mu(4/1) + b(2)*mu(4/2) + b(4)*mu(4/4) = 1*0 + 2*(-1) + 8*1 = 6.
		

Crossrefs

Cf. A008683 (mu), A007955 (product of divisors).

Programs

  • Magma
    [&+[&*Divisors(d)*MoebiusMu(n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Jan 05 2020
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * Times @@ Divisors[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, 30} ] (* Jean-François Alcover, Jan 09 2013 *)
  • PARI
    a(n)={sumdiv(n, d, vecprod(divisors(d))*moebius(n/d))} \\ Andrew Howroyd, Jan 05 2020
    

Formula

Moebius transform of A007955. - Andrew Howroyd, Jan 05 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 05 2020