cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175069 a(n) = product of perfect divisors of n / n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2010

Keywords

Comments

A perfect divisor of n is a divisor d such that d^k = n for some k >= 1.

Crossrefs

Cf. A175068.

Programs

  • Mathematica
    Table[Apply[Times, Select[Divisors@ n, Or[# == 1, #^IntegerExponent[n, #] == n] &]]/n, {n, 105}] (* Michael De Vlieger, Nov 21 2017 *)
  • PARI
    A175068(n) = { my(m=1); fordiv(n,d,if((1==d)||(d^valuation(n,d))==n,m*=d)); (m); };
    A175069(n) = (A175068(n)/n); \\ Antti Karttunen, Nov 21 2017

Formula

a(n) = A175068(n) / n. a(n) > 1 for perfect powers n = A001597(m) for m > 2.