cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175073 Primes q with result 1 under iterations of {r mod (max prime p < r)} starting at r = q.

Original entry on oeis.org

3, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 173, 179, 191, 197, 211, 223, 227, 233, 239, 251, 257, 263, 269, 277, 281, 293, 307
Offset: 1

Views

Author

Jaroslav Krizek, Jan 23 2010

Keywords

Comments

Subsequence of A175071.
Union of a(n) and A175074 is A175071. - Jaroslav Krizek, Jan 30 2010
The terms in A025584 but not in here are 2, 2999, 3299, 5147, 5981, 8999, 9587, ... , apparently those listed in A175080. - R. J. Mathar, Feb 01 2010
a(n-1)=A156828(n) in the range n=3..348, but afterwards the sequences differ because numbers like 2999 and 3229 are in A156828 but not in here. - R. J. Mathar, Mar 01 2010
Conjecture: under this iteration procedure, all primes eventually will yield either a 2 or a 1. If a 2 results, all subsequent terms are zeros; if a 1 results, all subsequent terms are -1s. The conjecture is true for the first 2 million primes. - Harvey P. Dale, Jan 17 2014

Examples

			Iteration procedure for a(2) = 11: 11 mod 7 = 4, 4 mod 3 = 1.
		

Crossrefs

Note that all three of A025584, A156828, A175073 are different sequences. - N. J. A. Sloane, Apr 10 2011

Programs

  • Maple
    isA175073 := proc(p)
        local r,rold;
        if not isprime(p) then
            return false;
        end if;
        r := p ;
        while true do
            rold :=r ;
            if r = 2 then
                return false ;
            end if;
            r := modp(r,prevprime(r)) ;
            if r = 1 then
                return true;
            elif r= rold then
                return false ;
            end if;
        end do:
    end proc:
    A175073 := proc(n)
        option remember ;
        if n= 1 then
            3;
        else
            for p from procname(n-1)+2 by 2 do
                if isA175073(p) then
                    return p;
                end if;
            end do:
        end if;
    end proc:
    seq(A175073(n),n=1..40) ; # R. J. Mathar, Mar 25 2024
  • Mathematica
    r1Q[n_] := FixedPoint[Mod[#, NextPrime[#, -1]] &, n] == -1; Select[Prime[ Range[70]],r1Q] (* This program relies upon the conjecture described in the comments above *) (* Harvey P. Dale, Jan 17 2014 *)