A175073 Primes q with result 1 under iterations of {r mod (max prime p < r)} starting at r = q.
3, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 131, 137, 149, 157, 163, 167, 173, 179, 191, 197, 211, 223, 227, 233, 239, 251, 257, 263, 269, 277, 281, 293, 307
Offset: 1
Keywords
Examples
Iteration procedure for a(2) = 11: 11 mod 7 = 4, 4 mod 3 = 1.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..10000
Crossrefs
Note that all three of A025584, A156828, A175073 are different sequences. - N. J. A. Sloane, Apr 10 2011
Programs
-
Maple
isA175073 := proc(p) local r,rold; if not isprime(p) then return false; end if; r := p ; while true do rold :=r ; if r = 2 then return false ; end if; r := modp(r,prevprime(r)) ; if r = 1 then return true; elif r= rold then return false ; end if; end do: end proc: A175073 := proc(n) option remember ; if n= 1 then 3; else for p from procname(n-1)+2 by 2 do if isA175073(p) then return p; end if; end do: end if; end proc: seq(A175073(n),n=1..40) ; # R. J. Mathar, Mar 25 2024
-
Mathematica
r1Q[n_] := FixedPoint[Mod[#, NextPrime[#, -1]] &, n] == -1; Select[Prime[ Range[70]],r1Q] (* This program relies upon the conjecture described in the comments above *) (* Harvey P. Dale, Jan 17 2014 *)
Comments