cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175087 Number of numbers whose product of perfect divisors is equal to n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Jan 24 2010

Keywords

Comments

Perfect divisor of n is divisor d such that d^k = n for some k >= 1. See A175068 (product of perfect divisors of n), A175084 (possible values for product of perfect divisors of n) and A175085 (numbers m such that product of perfect divisors of x = m has no solution). a(n) = 0 or 1 for all n.
That is, this is the characteristic function of A175084. - Antti Karttunen, Nov 21 2017

Crossrefs

Cf. A175068, A175084 (positions of ones), A175085 (of zeros).

Programs

  • Mathematica
    With[{nn = 105}, ReplacePart[ConstantArray[0, nn], Flatten@ Table[{i -> 1}, {i, TakeWhile[#, # <= nn &] &@ Union@ Table[Apply[Times, Select[Divisors@ n, Or[# == 1, #^IntegerExponent[n, #] == n] &]], {n, nn}]}] ] ] (* Michael De Vlieger, Nov 21 2017 *)
  • PARI
    A175068(n) = { my(m=1); fordiv(n,d,if((d>1)&&(d^valuation(n,d))==n,m*=d)); (m); };
    A175087(n) = sum(i=1,n,A175068(i)==n); \\ Antti Karttunen, Nov 21 2017

Formula

a(n) = Sum_{k=1..n} [A175068(k)==n]. - Antti Karttunen, Nov 21 2017

Extensions

More terms from Antti Karttunen, Nov 21 2017