A175110 a(n) = ((2*n+1)^4+1)/2.
1, 41, 313, 1201, 3281, 7321, 14281, 25313, 41761, 65161, 97241, 139921, 195313, 265721, 353641, 461761, 592961, 750313, 937081, 1156721, 1412881, 1709401, 2050313, 2439841, 2882401, 3382601, 3945241, 4575313, 5278001, 6058681
Offset: 0
References
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 54.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
I:=[1, 41, 313, 1201, 3281]; [n le 5 select I[n] else 5*Self(n-1) - 10*Self(n-2) + 10*Self(n-3) - 5*Self(n-4) + Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
-
Maple
A175110:=n->((2*n+1)^4+1)/2: seq(A175110(n), n=0..50); # Wesley Ivan Hurt, Apr 13 2017
-
Mathematica
CoefficientList[Series[(1 + 36*x + 118*x^2 + 36*x^3 + x^4)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *) Table[((2 n + 1)^4 + 1)/2, {n, 0, 29}] (* Michael De Vlieger, Dec 26 2016 *) LinearRecurrence[{5,-10,10,-5,1},{1,41,313,1201,3281},40] (* Harvey P. Dale, Jan 01 2022 *)
-
PARI
a(n)=((2*n+1)^4+1)/2 \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5).
G.f.: (1+36*x+118*x^2+36*x^3+x^4)/ (1-x)^5.
a(n)-a(n-1) = A117216(n).
Comments