cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175110 a(n) = ((2*n+1)^4+1)/2.

Original entry on oeis.org

1, 41, 313, 1201, 3281, 7321, 14281, 25313, 41761, 65161, 97241, 139921, 195313, 265721, 353641, 461761, 592961, 750313, 937081, 1156721, 1412881, 1709401, 2050313, 2439841, 2882401, 3382601, 3945241, 4575313, 5278001, 6058681
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Binomial transform of 1,40,232,384,192,0,0,.. (0 continued). Convolution of the finite sequence 1,36,118,36,1 with A000332, dropping zeros.
Hypotenuse of Pythagorean triangles with smallest side a square: A016754(n)^2 + (a(n)-1)^2 = a(n)^2. - Martin Renner, Nov 12 2011
a(n) is also the first integer in a sum of (2*n + 1)^4 consecutive integers that equal (2*n + 1)^8. See A016756 and A016760. - Patrick J. McNab, Dec 26 2016

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 54.

Crossrefs

Cf. A000332, A016756, A016760. Partial sums of A117216.

Programs

  • Magma
    I:=[1, 41, 313, 1201, 3281]; [n le 5 select I[n] else 5*Self(n-1) - 10*Self(n-2) + 10*Self(n-3) - 5*Self(n-4) + Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
    
  • Maple
    A175110:=n->((2*n+1)^4+1)/2: seq(A175110(n), n=0..50); # Wesley Ivan Hurt, Apr 13 2017
  • Mathematica
    CoefficientList[Series[(1 + 36*x + 118*x^2 + 36*x^3 + x^4)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    Table[((2 n + 1)^4 + 1)/2, {n, 0, 29}] (* Michael De Vlieger, Dec 26 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,41,313,1201,3281},40] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    a(n)=((2*n+1)^4+1)/2 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5).
G.f.: (1+36*x+118*x^2+36*x^3+x^4)/ (1-x)^5.
a(n)-a(n-1) = A117216(n).
a(n) = 8*A001844(n) * A000217(n) + 1 = 8*A219086(n) + 1. - Bruce J. Nicholson, Apr 13 2017