A175124 A symmetric triangle, with sum the large Schröder numbers.
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 161, 161, 35, 1, 1, 56, 434, 824, 434, 56, 1, 1, 84, 1008, 3186, 3186, 1008, 84, 1, 1, 120, 2100, 10152, 16840, 10152, 2100, 120, 1, 1, 165, 4026, 28050, 70807, 70807, 28050, 4026, 165, 1
Offset: 1
Examples
Triangle begins n\k.|..1....2....3....4....5....6....7 = = = = = = = = = = = = = = = = = = = = ..1.|..1 ..2.|..1....1 ..3.|..1....4....1 ..4.|..1...10...10....1 ..5.|..1...20...48...20....1 ..6.|..1...35..161..161...35....1 ..7.|..1...56..434..824..434...56....1 ... Row 3: b^2+4*b*w+w^2. Internal vertices colored either b(lack) or w(hite); 3 uncolored leaf nodes shown as o. . Weight b^2 w^2 b w /\ /\ / \ / \ b o w o /\ /\ / \ / \ o o o o . Weight b*w b w /\ /\ / \ / \ w o b o /\ /\ / \ / \ o o o o . b w /\ /\ / \ / \ o w o b /\ /\ / \ / \ o o o o
Links
- Brian Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
- Shishuo Fu, Z. Lin, and J. Zeng, Two new unimodal descent polynomials, arXiv preprint arXiv:1507.05184 [math.CO], 2015.
- Robert Moerman and Lauren K. Williams, Grass(mannian) trees and forests: Variations of the exponential formula, with applications to the momentum amplituhedron, Comb. Theor. (2023) Vol. 3, No. 1, Art. 10, see p. 13.
- Matteo Parisi, Melissa Sherman-Bennett, Ran Tessler, and Lauren Williams, The Magic Number Conjecture for the m=2 amplituhedron and Parke-Taylor identities, arXiv:2404.03026 [math.CO], 2024. See p. 8. See also Proc. 37th Conf. Formal Power Ser. Alg. Comb., Sém. Lotharingien Comb. (2025) Vol. 93B, Art. No. 103. See p. 5.
- Matteo Parisi, Melissa Sherman-Bennett, and Lauren Williams, The m=2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers, arXiv:2104.08254 [math.CO], 2021.
- Jeremy Quail and Puck Rombach, Positroid envelopes and graphic positroids, arXiv:2402.17841 [math.CO], 2024. See p. 31.
Programs
-
Maple
f:=RootOf((1+a*_Z)*(1+b*_Z)*x-_Z*(1-a*b*_Z^2));expand(taylor(f,x,4));
-
Mathematica
ab = InverseSeries[P*(1-a*b*P^2)/(1+a*P)/(1+b*P)+O[P]^12, P] // Normal // CoefficientList[#, P]&; (List @@@ ab) /. a|b -> 1 // Rest // Flatten (* Jean-François Alcover, Feb 23 2017 *)
Formula
G.f. is the composition inverse of P*(1-a*b*P^2)/(1+a*P)/(1+b*P).
Comments