cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175192 a(n) = characteristic function of numbers k such that A000203(m) = k has solution, where A000203(m) = sums of divisors of m.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Jaroslav Krizek, Mar 01 2010

Keywords

Comments

a(n) = 1 if A000203(m) = n for some m, else 0.
a(n) = 1 for n such that A054973(n) >= 1. a(n) = 0 for n such that A054973(n) = 0.

Crossrefs

Characteristic function of A002191.

Programs

  • Mathematica
    nn = 200; t = Union[Select[DivisorSigma[1, Range[nn]], # <= nn &]]; t2 = Table[0, {200}]; t2[[t]] = 1; t2 (* T. D. Noe, Jan 24 2012 *)
  • PARI
    up_to = 65537
    v175192 = vector(up_to);
    for(k=1, up_to, t=sigma(k); if(t<=up_to, v175192[t] = 1)); \\ See also code in A054973.
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,v175192,"b175192_upto65537.txt");
    \\ Antti Karttunen, Oct 20 2017

Extensions

More terms from Antti Karttunen, Oct 20 2017