A175242 a(n) = the number of divisors of n that are palindromes when written in binary.
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 1, 2, 4, 1, 2, 3, 1, 2, 4, 1, 1, 2, 2, 1, 4, 2, 1, 4, 2, 1, 3, 2, 3, 3, 1, 1, 2, 2, 1, 4, 1, 1, 6, 1, 1, 2, 2, 2, 4, 1, 1, 4, 2, 2, 2, 1, 1, 4, 1, 2, 6, 1, 3, 3, 1, 2, 2, 3, 1, 3, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 1, 4, 4, 1, 2, 1, 1, 6, 2, 1, 4, 1, 2, 2, 1, 2, 5, 2, 1, 4, 1, 1, 6
Offset: 1
Examples
a(3) = 2 since 3 has 2 divisors, 1 and 3, that are palindromes when written in binary: 1 and 11.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> add(`if`(l=ListTools[Reverse](l), 1, 0), l= map(Bits[Split], numtheory[divisors](n))): seq(a(n), n=1..105); # Alois P. Heinz, Jul 15 2022
-
Mathematica
palbQ[n_]:=Module[{idn2=IntegerDigits[n,2]},idn2==Reverse[idn2]]; Table[ Count[ Divisors[ n],?(palbQ[#]&)],{n,110}] (* _Harvey P. Dale, Mar 27 2019 *) a[n_] := DivisorSum[n, 1 &, PalindromeQ @ IntegerDigits[#, 2] &]; Array[a, 100] (* Amiram Eldar, Jan 01 2020 *)
-
PARI
is(n) = my(d=binary(n)); d==Vecrev(d); \\ A006995 a(n) = sumdiv(n, d, is(d)); \\ Michel Marcus, Jul 15 2022
-
Python
from sympy import divisors def c(n): b = bin(n)[2:]; return b == b[::-1] def a(n): return sum(1 for d in divisors(n, generator=True) if c(d)) print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jul 15 2022
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A244162 = 2.378795... . - Amiram Eldar, Jan 01 2024
Extensions
Extended by Ray Chandler, Mar 13 2010