A361272
Number of 1243-avoiding even Grassmannian permutations of size n.
Original entry on oeis.org
1, 1, 1, 3, 6, 12, 20, 32, 47, 67, 91, 121, 156, 198, 246, 302, 365, 437, 517, 607, 706, 816, 936, 1068, 1211, 1367, 1535, 1717, 1912, 2122, 2346, 2586, 2841, 3113, 3401, 3707, 4030, 4372, 4732, 5112, 5511, 5931, 6371, 6833, 7316, 7822, 8350, 8902, 9477, 10077
Offset: 0
For n=4 the a(4) = 6 permutations are 1234, 1342, 1423, 2314, 3124, 3412.
A230447
T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104
Offset: 0
The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 1
2| 2, 2, 2
3| 2, 4, 5, 3
4| 3, 6, 9, 8, 6
5| 3, 9, 16, 17, 14, 9
6| 4, 12, 25, 33, 32, 23, 15
7| 4, 16, 38, 58, 65, 55, 39, 24
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 1, 2, 3, 6, 9, 15, 24
1| 1, 2, 5, 8, 14, 23, 39, 63
2| 2, 4, 9, 17, 32, 55, 94, 157
3| 2, 6, 16, 33, 65, 120, 215, 372
4| 3, 9, 25, 58, 124, 244, 459, 831
5| 3, 12, 38, 96, 220, 464, 924, 1755
6| 4, 16, 54, 150, 371, 835, 1759, 3514
7| 4, 20, 75, 225, 596, 1431, 3191, 6705
-
T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A282044
Reduced Kronecker coefficients for the case a=2, b=3, i=4.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 5, 9, 16, 24, 37, 51, 71, 93
Offset: 0
Showing 1-3 of 3 results.
Comments