cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A175287 Partial sums of ceiling(n^2/4).

Original entry on oeis.org

0, 1, 2, 5, 9, 16, 25, 38, 54, 75, 100, 131, 167, 210, 259, 316, 380, 453, 534, 625, 725, 836, 957, 1090, 1234, 1391, 1560, 1743, 1939, 2150, 2375, 2616, 2872, 3145, 3434, 3741, 4065, 4408, 4769, 5150, 5550, 5971, 6412, 6875, 7359, 7866, 8395, 8948, 9524, 10125, 10750
Offset: 0

Views

Author

Mircea Merca, Dec 03 2010

Keywords

Comments

a(n) is the number of 1243-avoiding odd Grassmannian permutations of size n+1. Avoiding any of the patterns 2134, 2341, or 4123, gives the same sequence. - Juan B. Gil, Mar 09 2023
Conjecture: a(n) is the number of perimeter-magic (hollow) triangles of order 3 with magic sum n+2. Order 3 means each of the 3 edges has 3 elements >=1; the triangle has 6 elements. The elements do not need to be distinct, and triangles obtained by rotations are counted only once. The triangle (read ccw) for magic sum 3 has elements 1 1 1 1 1 1. The 2 triangles with magic sum 4 are 1 1 2 1 1 2 and 1 2 1 2 1 2. - R. J. Mathar, Mar 08 2025

Examples

			a(4) = ceil(0/4)+ceil(1/4)+ceil(4/4)+ceil(9/4)+ceil(16/4) = 0+1+1+3+4=9.
		

Crossrefs

Partial sums of A004652.
Cf. A361272.

Programs

  • Magma
    [Floor((n+1)*(2*n^2+n+9)/24): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
    
  • Maple
    a:= n-> round((2*n^(3)+3*n^(2)+10*n)/24): seq(a(n), n=0..20);
  • Mathematica
    Table[Sum[Ceiling[i^2/4], {i, 0, n}], {n, 0, 49}] (* or *) Table[(2n(2n^2 + 3n + 10) -9(-1)^n + 9)/48, {n, 0, 49}] (* Alonso del Arte, Dec 03 2010 *)
    CoefficientList[Series[(x^3 - x^2 + x)/(x^5 - 3 x^4 + 2 x^3 + 2 x^2 - 3 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    Accumulate[Ceiling[Range[0,50]^2/4]] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,2,5,9},60] (* Harvey P. Dale, Nov 19 2014 *)
  • PARI
    x='x+O('x^99); concat(0, Vec((x^3-x^2+x)/ (x^5-3*x^4+2*x^3+2*x^2-3*x+1))) \\ Altug Alkan, Apr 05 2016

Formula

a(n) = round((2*n+1)*(2*n^2+2*n+9)/48).
a(n) = floor((n+1)*(2*n^2+n+9)/24).
a(n) = ceiling((2*n^3+3*n^2+10*n)/24).
a(n) = round((2*n^3+3*n^2+10*n)/24).
a(n) = a(n-4)+n^2-3*n+5 , n>3.
G.f.: x*(1-x+x^2) / ( (1+x)*(x-1)^4 ).
a(n) = (2*n*(2*n^2+3*n+10)-9*(-1)^n+9)/48. - Bruno Berselli, Dec 03 2010
a(n)+a(n+1) = A004006(n+1). - R. J. Mathar, Mar 08 2025

A361273 Number of 1324-avoiding even Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 20, 37, 47, 81, 91, 151, 156, 253, 246, 393, 365, 577, 517, 811, 706, 1101, 936, 1453, 1211, 1873, 1535, 2367, 1912, 2941, 2346, 3601, 2841, 4353, 3401, 5203, 4030, 6157, 4732, 7221, 5511, 8401, 6371, 9703, 7316, 11133, 8350, 12697, 9477, 14401, 10701
Offset: 0

Views

Author

Juan B. Gil, Mar 09 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. A permutation is even if it has an even number of inversions.

Examples

			For n=4 the a(4) = 6 permutations are 1234, 1342, 1423, 2314, 3124, 3412.
		

Crossrefs

Formula

G.f.: -(x^7+2*x^6-7*x^5-8*x^4+x^3+3*x^2-x-1)/((x+1)^4*(x-1)^4).

A361275 Number of 1423-avoiding even Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 17, 29, 41, 61, 81, 111, 141, 183, 225, 281, 337, 409, 481, 571, 661, 771, 881, 1013, 1145, 1301, 1457, 1639, 1821, 2031, 2241, 2481, 2721, 2993, 3265, 3571, 3877, 4219, 4561, 4941, 5321, 5741, 6161, 6623, 7085, 7591, 8097, 8649, 9201, 9801, 10401
Offset: 0

Views

Author

Juan B. Gil, Mar 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. A permutation is even if it has an even number of inversions.
Avoiding any of the patterns 2314 or 3412 gives the same sequence.

Examples

			For n=4 the a(4) = 5 permutations are 1234, 1342, 2314, 3124, 3412.
		

Crossrefs

For the corresponding odd permutations, cf. A005993.

Programs

  • Maple
    seq(1 - 5*n/24 + n^3/12 - (-1)^n * n/8, n = 0 .. 100); # Robert Israel, Mar 10 2023

Formula

G.f.: -(x^5-x^4-4*x^3+2*x^2+x-1)/((x+1)^2*(x-1)^4).
a(n) = 1 - 5*n/24 + n^3/12 - (-1)^n * n/8. - Robert Israel, Mar 10 2023

A361276 Number of 2413-avoiding even Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 22, 37, 55, 81, 111, 151, 196, 253, 316, 393, 477, 577, 685, 811, 946, 1101, 1266, 1453, 1651, 1873, 2107, 2367, 2640, 2941, 3256, 3601, 3961, 4353, 4761, 5203, 5662, 6157, 6670, 7221, 7791, 8401, 9031, 9703, 10396, 11133, 11892, 12697, 13525, 14401
Offset: 0

Views

Author

Juan B. Gil, Mar 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. A permutation is even if it has an even number of inversions.

Examples

			For n=4 the a(4) = 6 permutations are 1234, 1342, 1423, 2314, 3124, 3412.
		

Crossrefs

For the corresponding odd permutations, cf. A006918.

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{1,1,1,3,6,13},50] (* Harvey P. Dale, Aug 14 2023 *)

Formula

G.f.: -(x^5-2*x^4-4*x^3+2*x^2+x-1)/((x+1)^2*(x-1)^4).
Showing 1-4 of 4 results.