A175331 Array A092921(n,k) without the first two rows, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 4, 2, 1, 1, 8, 7, 4, 2, 1, 1, 13, 13, 8, 4, 2, 1, 1, 21, 24, 15, 8, 4, 2, 1, 1, 34, 44, 29, 16, 8, 4, 2, 1, 1, 55, 81, 56, 31, 16, 8, 4, 2, 1, 1, 89, 149, 108, 61, 32, 16, 8, 4, 2, 1, 1, 144, 274, 208, 120, 63, 32, 16, 8, 4, 2, 1, 1, 233, 504, 401, 236, 125, 64, 32, 16, 8, 4, 2, 1
Offset: 2
Examples
The array starts in row n=2 with columns k >= 1 as: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 3 4 4 4 4 4 4 4 4 1 5 7 8 8 8 8 8 8 8 1 8 13 15 16 16 16 16 16 16 1 13 24 29 31 32 32 32 32 32 1 21 44 56 61 63 64 64 64 64 1 34 81 108 120 125 127 128 128 128 1 55 149 208 236 248 253 255 256 256
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 125, 155.
Links
- Srecko Brlek, Andrea Frosini, Simone Rinaldi, and Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol.13, (2006). Table 1 is essentially this array. - _N. J. A. Sloane_, Jul 20 2014
Programs
-
Maple
A092921 := proc(n,k) if k <= 0 or n <= 0 then 0; elif k = 1 or n = 1 then 1; else add( procname(n-i,k),i=1..k) ; end if; end proc: A175331 := proc(n,k) A092921(n,k) ; end proc: # R. J. Mathar, Dec 17 2010
-
Mathematica
f[x_, n_] = (x - x^(m + 1))/(1 - 2*x + x^(m + 1)) a = Table[Table[SeriesCoefficient[ Series[f[x, m], {x, 0, 10}], n], {n, 0, 10}], {m, 1, 10}]; Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}]; Flatten[%]
Comments