cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175331 Array A092921(n,k) without the first two rows, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 4, 2, 1, 1, 8, 7, 4, 2, 1, 1, 13, 13, 8, 4, 2, 1, 1, 21, 24, 15, 8, 4, 2, 1, 1, 34, 44, 29, 16, 8, 4, 2, 1, 1, 55, 81, 56, 31, 16, 8, 4, 2, 1, 1, 89, 149, 108, 61, 32, 16, 8, 4, 2, 1, 1, 144, 274, 208, 120, 63, 32, 16, 8, 4, 2, 1, 1, 233, 504, 401, 236, 125, 64, 32, 16, 8, 4, 2, 1
Offset: 2

Views

Author

Roger L. Bagula, Dec 03 2010

Keywords

Comments

Antidiagonal sums are A048888. This is a transposed version of A048887, so the bivariate generating function is obtained by swapping the two arguments.
Brlek et al. (2006) call this table "number of psp-polyominoes with flat bottom". - N. J. A. Sloane, Oct 30 2018

Examples

			The array starts in row n=2 with columns k >= 1 as:
  1   1   1   1   1   1   1   1   1   1
  1   2   2   2   2   2   2   2   2   2
  1   3   4   4   4   4   4   4   4   4
  1   5   7   8   8   8   8   8   8   8
  1   8  13  15  16  16  16  16  16  16
  1  13  24  29  31  32  32  32  32  32
  1  21  44  56  61  63  64  64  64  64
  1  34  81 108 120 125 127 128 128 128
  1  55 149 208 236 248 253 255 256 256
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 125, 155.

Crossrefs

Programs

  • Maple
    A092921 := proc(n,k) if k <= 0 or n <= 0 then 0; elif k = 1 or n = 1 then 1; else add( procname(n-i,k),i=1..k) ; end if; end proc:
    A175331 := proc(n,k) A092921(n,k) ; end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    f[x_, n_] = (x - x^(m + 1))/(1 - 2*x + x^(m + 1))
    a = Table[Table[SeriesCoefficient[
          Series[f[x, m], {x, 0, 10}], n], {n, 0, 10}], {m, 1, 10}];
    Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}];
    Flatten[%]

Formula

T(n,k) = A092921(n,k), n >= 2.
T(n,2) = A000045(n).
T(n,3) = A000073(n+2).
T(n,4) = A000078(n+2).