A144406 Rectangular array A read by upward antidiagonals: entry A(n,k) in row n and column k gives the number of compositions of k in which no part exceeds n, n>=1, k>=0.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 4, 5, 1, 1, 1, 2, 4, 7, 8, 1, 1, 1, 2, 4, 8, 13, 13, 1, 1, 1, 2, 4, 8, 15, 24, 21, 1, 1, 1, 2, 4, 8, 16, 29, 44, 34, 1, 1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1, 1, 1, 2, 4, 8, 16, 32, 61, 108, 149, 89, 1, 1, 1, 2, 4, 8, 16, 32, 63, 120, 208, 274, 144, 1
Offset: 1
Examples
Array A begins: {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...} {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...} {1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...} {1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, ...} {1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, ...} {1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, ...} {1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, ...} {1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, ...} {1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, ...} ... - _L. Edson Jeffery_, Dec 26 2013 As a triangle: {1}, {1, 1}, {1, 1, 1}, {1, 1, 2, 1}, {1, 1, 2, 3, 1}, {1, 1, 2, 4, 5, 1}, {1, 1, 2, 4, 7, 8, 1}, {1, 1, 2, 4, 8, 13, 13, 1}, {1, 1, 2, 4, 8, 15, 24, 21, 1}, {1, 1, 2, 4, 8, 16, 29, 44, 34, 1}, {1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1}, {1, 1, 2, 4, 8, 16, 32, 61, 108, 149, 89, 1}, {1, 1, 2, 4, 8, 16, 32, 63, 120, 208, 274, 144, 1}, {1, 1, 2, 4, 8, 16, 32, 64, 125, 236, 401, 504, 233, 1}, {1, 1, 2, 4, 8, 16, 32, 64, 127, 248, 464, 773, 927, 377, 1}
Crossrefs
Programs
-
Mathematica
g[x_, n_] = x^(n) - (x^n - 1)/(x - 1); h[x_, n_] = FullSimplify[ExpandAll[x^(n)*g[1/x, n]]]; f[t_, n_] := 1/h[t, n]; a = Table[CoefficientList[Series[f[t, m], {t, 0, 30}], t], {m, 1, 31}]; b = Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}]; Flatten[b] (* Triangle version *) Grid[Table[CoefficientList[Series[(1 - x)/(1 - 2 x + x^(n + 1)), {x, 0, 10}], x], {n, 1, 10}]] (* Array version - L. Edson Jeffery, Jul 18 2014 *)
Formula
t(n,m) = antidiagonal_expansion of p(x,n) where p(x,n) = (x-1)/(x^n*(-x+(2*x-1)/x^n)).
G.f. for array A: (1-x)/(1 - 2*x + x^(n+1)), n>=1. - L. Edson Jeffery, Dec 26 2013
Extensions
Definition changed by L. Edson Jeffery, Jul 18 2014
Comments