cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175391 Perfect squares having a square number of divisors.

Original entry on oeis.org

1, 36, 100, 196, 225, 256, 441, 484, 676, 1089, 1156, 1225, 1296, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6561, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 10000, 11236, 12321, 13225, 13924, 14161, 14884, 15129
Offset: 1

Views

Author

Leroy Quet, Apr 27 2010

Keywords

Comments

From Robert Israel, Mar 20 2018: (Start)
If m and n are coprime members of the sequence, then m*n is in the sequence.
Includes all numbers of the forms p^(4*i*(i+1)) and p^(2*i)*q^(2*i) where p, q are distinct primes and i is a positive integer. (End)

Crossrefs

Cf. A063774, A175050. - Leroy Quet, May 16 2010

Programs

  • Maple
    with(numtheory): a := proc (n) if type(sqrt(tau(n^2)), integer) = true then n^2 else end if end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 11 2010
  • Mathematica
    Select[Range[150], IntegerQ[Sqrt[DivisorSigma[0, #^2]]]&]^2 (* Vincenzo Librandi, Mar 21 2018 *)
    Select[Range[150]^2,IntegerQ[Sqrt[DivisorSigma[0,#]]]&] (* Harvey P. Dale, Aug 16 2025 *)
  • PARI
    isok(n) = issquare(n) && issquare(numdiv(n)); \\ Michel Marcus, Mar 21 2018

Formula

a(n) = A063774(n)^2. - Leroy Quet, May 16 2010

Extensions

Extended by Emeric Deutsch and Jon E. Schoenfield, May 11 2010