cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254141 The average of a(n) consecutive Fibonacci numbers is never an integer.

Original entry on oeis.org

8, 16, 21, 28, 32, 40, 52, 55, 56, 64, 65, 68, 69, 80, 84, 85, 87, 88, 92, 93, 99, 104, 105, 112, 117, 119, 128, 132, 133, 136, 140, 141, 145, 148, 152, 153, 155, 156, 160, 161, 164, 165, 171, 172, 176, 184, 187, 188, 196, 200, 203, 204, 205, 207, 208, 209, 212
Offset: 1

Views

Author

Paolo P. Lava, Jan 26 2015

Keywords

Comments

Subset of A033949 and A175594 (essentially the same sequence).
Numbers of the form 2^k, with k>=3, appear to be part of the sequence.
The file "List of indexes and steps (k, x, y)" (see Links) for k = 1, 2, 3, 4, ... consecutive Fibonacci numbers gives the minimum index to start to calculate the average ( x ) and the step to add to get all the other averages ( y ).
E.g.: for k = 7 we have 7, 6, 8. This means that we must start from the 6th Fibonacci number to add 7 consecutive Fibonacci numbers and get an average that is an integer. Fibonacci(6) + Fibonacci(7) + ... + Fibonacci(12) = 8 + 13 + 21 + 34 + 55 + 89 + 144 = 364 and 364 / 7 = 52.
Then 6 + 1*8 = 14, 6 + 2*8 = 22, 6 + 3*8 = 30, etc. are the other indexes:
Fibonacci(14) + Fibonacci (15) + ... + Fibonacci(20) = 377 + 610 + 987 + 1597 + 2584 + 4181 + 6765 = 17101 and 17101 / 7 = 2443;
Fibonacci(22) + Fibonacci(23) + ... + Fibonacci(28) = 17711 + 28657 + 46368 + 75025 + 121393 + 196418 + 317811 = 803383 and 803383 / 7 = 114769;
Fibonacci(30) + Fibonacci(31) + ... + Fibonacci(36) = 832040 + 1346269 + 2178309 + 3524578 + 5702887 + 9227465 + 14930352 = 37741900 and 37741900 / 7 = 5391700; etc.
In particular we note that:
x = 0 is A219612; x = 1 is A124456; x = 0 and y = k - 1 is A106535;
y = 1 is A141767; x = k - 1 and y = k + 1 is A000057;
x = y - 1 or y|k is A023172; y = k is A000351;
x = y - k + 1 appears to give only prime numbers: 3,11,19,31,59,71,79,131,179,191,239,251,271,311,359,379,419,431,439,479,491,499,571,599,631,659,719,739,751,839,971, etc.

Crossrefs

Programs

  • Maple
    with(numtheory); with(combinat):P:=proc(q) local a,b,k,j,n,ok;
    for j from 1 to q do b:=0; ok:=1;
    for n from 0 to q do a:=add(fibonacci(n+k),k=0..j-1)/j;
    if type(a,integer) then ok:=0; break; fi; od;
    if ok=1 then print(j); fi; od; end: P(20000);

A216419 Odd powers that are not prime powers.

Original entry on oeis.org

225, 441, 1089, 1225, 1521, 2025, 2601, 3025, 3249, 3375, 3969, 4225, 4761, 5625, 5929, 7225, 7569, 8281, 8649, 9025, 9261, 9801, 11025, 12321, 13225, 13689, 14161, 15129, 16641, 17689, 18225, 19881, 20449, 21025, 21609, 23409, 24025, 25281, 25921, 27225
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 06 2012

Keywords

Comments

Numbers in A075109 but not in A000961.
Also odd perfect powers having no primitive root (intersection of A075109 and A175594).

Examples

			81 = 9^2 as well as 81 = 3^4, therefore 81 is not a term.
225 can be expressed so in one way as (3*5)^2, therefore 225 is a term.
		

Crossrefs

Programs

  • Magma
    [n : n in [3..27225 by 2] | IsPower(n) and EulerPhi(n) ne CarmichaelLambda(n)]; // Arkadiusz Wesolowski, Nov 09 2013
  • Mathematica
    nn = 27500; lst = Union[Flatten[Table[n^i, {i, Prime[Range[PrimePi[Log[2, nn]]]]}, {n, 2, nn^(1/i)}]]]; Select[lst, OddQ[#] && ! IntegerQ@PrimitiveRoot[#] &] (* Most of the code is from T. D. Noe *)

Formula

Sum_{n>=1} 1/a(n) = 1/2 + Sum_{k>=2} mu(k)*(1-zeta(k)*(2^k-1)/2^k) - Sum_{p prime} 1/(p*(p-1)) = 0.0158808884... - Amiram Eldar, Dec 21 2020
Showing 1-2 of 2 results.