A175607 Largest number k such that the greatest prime factor of k^2 - 1 is prime(n).
3, 17, 161, 8749, 19601, 246401, 672281, 23718421, 10285001, 354365441, 3222617399, 9447152318, 127855050751, 842277599279, 2218993446251, 2907159732049, 41257182408961, 63774701665793, 25640240468751, 238178082107393, 4573663454608289, 19182937474703818751, 34903240221563713, 332110803172167361, 99913980938200001
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..25
- Joerg Arndt, Matters Computational (The Fxtbook), section 32.4, pp.632-633.
- Florian Luca and Filip Najman, "On the largest prime factor of x^2-1", Mathematics of Computation 80:273 (2011), pp. 429-435. (Paper has errata that was posted on the MOC website.)
- Filip Najman, Home Page (gives all 16223 numbers k such that k^2-1 has no prime factor greater than 97)
Crossrefs
Cf. A214093 (largest primes p such that the greatest prime factor of p^2-1 is prime(n)).
Cf. A076605 (largest prime divisor of n^2-1).
Cf. A285283 (equivalent for k^2+1). - Tomohiro Yamada, Apr 22 2017
Programs
-
PARI
/* up to term for p=97 */ /* S[] is the list computed by Filip Najman (16223 elements) */ S=[2,3,4, ... ,332110803172167361, 19182937474703818751]; lpf(n)={ vecmax(factor(n)[, 1]) } /* largest prime factor */ { forprime (p=2, 97, t = 0; for (n=1,#S, if ( lpf(S[n]^2-1)==p, t=n ) ); print1(S[t],", "); );} /* Joerg Arndt, Jul 03 2012 */
Extensions
More terms (using Filip Najman's list) by Joerg Arndt, Jul 03 2012
Comments