cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A076605 Largest prime divisor of n^2 - 1.

Original entry on oeis.org

3, 2, 5, 3, 7, 3, 7, 5, 11, 5, 13, 7, 13, 7, 17, 3, 19, 5, 19, 11, 23, 11, 23, 13, 5, 13, 29, 7, 31, 5, 31, 17, 11, 17, 37, 19, 37, 19, 41, 7, 43, 11, 43, 23, 47, 23, 47, 5, 17, 13, 53, 13, 53, 7, 19, 29, 59, 29, 61, 31, 61, 31, 13, 11, 67, 17, 67, 17, 71, 7
Offset: 2

Views

Author

Jon Perry, Oct 21 2002

Keywords

Comments

Also the largest prime that divides either n-1 or n+1.
Størmer shows that a(n) tends to infinity with n. Schinzel shows that lim inf a(n)/log log n >= 2 and, using lower bounds for linear forms of logarithms, this inequality can be generalized for general quadratic polynomials, with 2 replaced by 4/7 for irreducible ones and 2/7 for reducible ones. - Tomohiro Yamada, Apr 15 2017

Examples

			n=11: the largest prime factor of 10 and 12 is 5, therefore a(11) = 5.
		

References

  • K. Mahler, "Uber den grossten Primteiler spezieller Polynome zweiten Grades", Arch. Math. Naturvid. B.41, 1935, pp. 3 - 26.

Crossrefs

Cf. A006530, A037464, A074399 (bisections).
Cf. A175607.
Cf. A014442 (largest prime divisor of n^2 + 1). - Tomohiro Yamada, Apr 15 2017

Programs

  • Mathematica
    Table[ Last[ Table[ # [[1]]] & /@ FactorInteger[n^2 - 1]], {n, 2, 80}]
  • PARI
    for (n=3,100, print1(","max(factor(n-1)[,1][length(factor(n-1)[,1])],factor(n+1)[,1][length(factor(n+1)[,1])])))

A181447 Numbers k such that 3 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

2, 5, 7, 17
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Sequence is finite and complete, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(2) = 17; primepi(3) = 2.

Crossrefs

Programs

  • Magma
    [ n: n in [2..20] | m eq 3 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 17 2011
    
  • Mathematica
    Select[Range[20], FactorInteger[#^2-1][[-1, 1]]==3&]
  • PARI
    is(n)=n=n^2-1;my(o=valuation(n,3)); o && n>>valuation(n/3^o,2)==1 \\ Charles R Greathouse IV, Jul 01 2013

A181470 Numbers n such that 97 is the largest prime factor of n^2 - 1.

Original entry on oeis.org

96, 98, 193, 195, 290, 389, 484, 581, 583, 775, 872, 874, 969, 971, 1066, 1163, 1165, 1359, 1456, 1551, 1553, 1648, 1747, 1844, 1939, 2036, 2133, 2135, 2232, 2521, 2715, 2911, 3008, 3103, 3299, 3394, 3396, 3590, 3976, 4267, 4269, 4463, 4558, 4946, 5045
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(25) = 99913980938200001; primepi(97) = 25.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 97 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 97 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Mathematica
    jj = 2^36 * 3^23 * 5^15 * 7^13 * 11^10 * 13^9 * 17^8 * 19^8 * 23^8 * 29^7 * 31^7 * 37^7*41^6 * 43^6 * 47^6 * 53^6 * 59^6 * 61^6 * 67^6 * 71^5 * 73^5 * 79^5 * 83^5 * 89^5 * 97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 97, AppendTo[rr, n]]]; n++]; rr
    (* or *)
    Select[Range[300000], FactorInteger[#^2 - 1][[-1, 1]] == 97 &]
  • PARI
    is(n)=n=n^2-1;forprime(p=2,89,n/=p^valuation(n,p));n>1 && 97^valuation(n,97)==n \\ Charles R Greathouse IV, Jul 01 2013

A181568 Numbers k such that the largest prime factor of k^2-1 is 101.

Original entry on oeis.org

100, 201, 203, 302, 304, 403, 405, 506, 607, 706, 807, 809, 1009, 1011, 1112, 1211, 1312, 1415, 1514, 1516, 1716, 1819, 1918, 2221, 2324, 2524, 2526, 2625, 2627, 3231, 3233, 3334, 3433, 3635, 3736, 3839, 4041, 4241, 4344, 4445, 4544, 4645, 4647, 4746
Offset: 1

Views

Author

Klaus Brockhaus, Oct 31 2010

Keywords

Comments

Sequence is finite, number of terms and last term are still unknown (cf. A175607, A181471).
From David A. Corneth, Sep 11 2019: (Start)
Are there any terms > 941747621709311?
As k^2 - 1 = (k - 1)(k + 1), a(n) is of the form 101*m +- 1. (End)

Crossrefs

Programs

  • Magma
    [ n: n in [2..5000] | m eq 101 where m is D[#D] where D is PrimeDivisors(n^2-1) ];
    
  • Mathematica
    Select[Range[4746], FactorInteger[#^2-1][[-1, 1]]==101&] (* Metin Sariyar, Sep 15 2019 *)
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 97, n/=p^valuation(n, p)); n>1 && 101^valuation(n, 101)==n \\ Charles R Greathouse IV, Jul 01 2013

A002072 a(n) = smallest number m such that for all k > m, either k or k+1 has a prime factor > prime(n).

Original entry on oeis.org

1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 31887350832896, 119089041053696, 2286831727304144, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 19316158377073923834000
Offset: 1

Views

Author

Keywords

Comments

An effective abc conjecture (c < rad(abc)^2) would imply that a(27) = a(28) = ... = a(32), and a(33) = 124225935845233319439173. - Lucas A. Brown, Sep 20 2020

Examples

			a(1) = 1 since for any number k greater than 1, it is impossible that k and k+1 both are powers of 2, so at least one of them has a prime factor > 2. (For m = 0 this would not hold for k = 1, k+1 = 2.)
a(2) = 8 since for any larger k, we cannot have k and k+1 both 3-smooth (cf. A003586).
31887350832897 = 3^9*7*37*41^2*61^2, 31887350832896 = 2^8*13*19*23*29^4*31, this number appears twice because there is no pair of numbers with max. factor = 67 that is larger than this number.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    smoothNumbers[p_?PrimeQ, max_Integer] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand[Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]] }, {j, 1, k}]; Sort[Flatten[Table[Times @@ (pp^aa), Evaluate[ Sequence @@ iter]]]]]; a[n_] := Module[{sn = smoothNumbers[Prime[n], Ceiling[2000 + 10^n/n]], pos}, pos = Position[Differences[sn], 1][[-1, 1]]; sn[[pos]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 17 2016, after M. F. Hasler's observation *)
  • PARI
    A002072(n, a=[1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024])=a[n] \\ "practical" solution for use in other sequences, easily extended to more values. - M. F. Hasler, Jan 16 2015
    
  • PARI
    A2072=List(1); A002072(n)={while(#A2072 best && isSmooth(sol, P) && isSmooth(sol+1, P) && best=sol, p=primes([1, P])); for(i=1, 2^#p, i==2 && next; my(qq = 2*vecprod(vecextract(p,i-1)), qn = [qq, sqrtint(qq), 0, 1], cf = [1,0,0,1], xi, aa, x0, x1, y0, y1); until(x0, aa = (qn[2]+qn[3])\qn[4]; qn[3] = aa*qn[4] - qn[3]; qn[4] = (qn[1] - qn[3]^2) \ qn[4]; cf = [aa*cf[1]+cf[3], aa*cf[2]+cf[4], cf[1], cf[2]]; cf[1]^2 - qq*cf[2]^2 == 1 && [x0,x1, y0,y1] = [x1, cf[1], y1, cf[2]] ); isSmooth(y0, P) || next; check(xi = x0); check(x1); for (i=3, max(P\/2, 3), [x0, x1] = [x1, x1 * xi * 2 - x0]; check(x1)))/*for i*/; listput(A2072, best) } \\ Following Don Reble's Python program. - M. F. Hasler, Mar 01 2025

Formula

a(n) < 10^n/n except for n=4. (Conjectured, from experimental data.) - M. F. Hasler, Jan 16 2015

Extensions

More terms from Don Reble, Jan 11 2005
a(18)-a(26) from Fred Schneider, Sep 09 2006
Corrected and extended by Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations.

A223701 Irregular triangle of numbers k such that prime(n) is the largest prime factor of k^2 - 1.

Original entry on oeis.org

3, 2, 5, 7, 17, 4, 9, 11, 19, 26, 31, 49, 161, 6, 8, 13, 15, 29, 41, 55, 71, 97, 99, 127, 244, 251, 449, 4801, 8749, 10, 21, 23, 34, 43, 65, 76, 89, 109, 111, 197, 199, 241, 351, 485, 769, 881, 1079, 6049, 19601, 12, 14, 25, 27, 51, 53, 64, 79, 129, 131, 155
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that the first number of each row forms the sequence 3, 2, 4, 6, 10, 12,..., which is A039915. The first 25 rows, except the first, are in A181447-A181470.

Examples

			Irregular triangle:
  {3},
  {2, 5, 7, 17},
  {4, 9, 11, 19, 26, 31, 49, 161},
  {6, 8, 13, 15, 29, 41, 55, 71, 97, 99, 127, 244, 251, 449, 4801, 8749}
		

Crossrefs

Row 26 is A181568.
Cf. A039915 (first terms), A175607 (last terms), A181471 (row lengths), A379344 (row sums).
Cf. A223702, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 - 1][[-1,1]], {n, 2, 10^5}]; Table[1 + Flatten[Position[t, Prime[n]]], {n, 6}]

A068310 n^2 - 1 divided by its largest square divisor.

Original entry on oeis.org

3, 2, 15, 6, 35, 3, 7, 5, 11, 30, 143, 42, 195, 14, 255, 2, 323, 10, 399, 110, 483, 33, 23, 39, 3, 182, 87, 210, 899, 15, 1023, 17, 1155, 34, 1295, 38, 1443, 95, 1599, 105, 1763, 462, 215, 506, 235, 138, 47, 6, 51, 26, 2703, 78, 2915, 21, 3135, 203, 3363, 870, 3599
Offset: 2

Views

Author

Lekraj Beedassy, Feb 25 2002

Keywords

Comments

In other words, squarefree part of n^2-1.
Least m for which x^2 - m*y^2 = 1 has a solution with x = n.

Examples

			a(6) = 35, as 6^2 - 1 = 35 itself is squarefree.
7^2-1 = 48 = A005563(6), whose largest square divisor is A008833(48) = 16, so a(7) = 48/16 = 3.
		

Crossrefs

Programs

  • Haskell
    a068310 n = f 1 $ a027746_row (n^2 - 1) where
       f y [] = y
       f y [p] = y*p
       f y (p:ps'@(p':ps)) | p == p' = f y ps
                           | otherwise = f (y*p) ps'
    -- Reinhard Zumkeller, Nov 26 2011
  • Mathematica
    a[n_] := Times@@(#[[1]] ^ Mod[ #[[2]], 2]&/@FactorInteger[n^2-1])
    Table[(n^2-1)/Max[Select[Divisors[n^2-1],IntegerQ[Sqrt[#]]&]],{n,2,60}] (* Harvey P. Dale, Dec 08 2019 *)
  • PARI
    a(n) = core(n*n - 1); \\ David Wasserman, Mar 07 2005
    

Formula

a(n) = A007913(n^2-1).
a(n) = A005563(n-1) / A008833(n^2 - 1). - Reinhard Zumkeller, Nov 26 2011; corrected by Georg Fischer, Dec 10 2022

Extensions

Edited by Dean Hickerson, Mar 19 2002
Entry revised by N. J. A. Sloane, Apr 27 2007

A145606 Largest number x such that x and x+1 are prime(n)-smooth but not prime(n-1)-smooth.

Original entry on oeis.org

1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 5142500, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 12820120234375, 119089041053696, 2286831727304144, 9591468737351909375, 17451620110781856, 166055401586083680, 49956990469100000, 4108258965739505499, 19316158377073923834000, 386539843111191224
Offset: 1

Views

Author

T. D. Noe, Oct 14 2008

Keywords

Comments

Note that this sequence is not always increasing. For many n, a(n) is the same as A002072(n). See A145605 for a triangle of values.
An effective abc conjecture (c < rad(abc)^2) would imply that a(29)-a(33) is (90550606380841216610, 205142063213188103639, 53234795127882729824, 4114304445616636016031, 124225935845233319439173). - Lucas A. Brown, Sep 20 2020

Crossrefs

Extensions

Terms a(16) onward by Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations

A181471 a(n) = number of numbers of the form k^2-1 having n-th prime as largest prime divisor.

Original entry on oeis.org

1, 4, 8, 16, 20, 34, 47, 72, 95, 126, 168, 208, 262, 343, 433, 507, 634, 799, 976, 1146, 1439, 1698, 2082, 2371, 2734
Offset: 1

Views

Author

Artur Jasinski, Oct 21-22 2010

Keywords

Comments

Theorem: zero does not occur in this sequence. Proof: (p-1)^2-1=(p-2)p. This means that p is greatest prime divisor of (p-1)^2-1 for every p.
An effective abc conjecture (c < rad(abc)^2) would imply that a(24)-a(33) are (2371, 2734, 3360, 4022, 4637, 5575, 6424, 7268, 8351, 9661). - Lucas A. Brown, Oct 01 2022

Crossrefs

Row lengths of A223701.

Extensions

Wrong terms a(24)-a(25) removed by Lucas A. Brown, Oct 01 2022
a(24)-a(25) from David A. Corneth, Oct 01 2022

A185389 Largest number k such that the greatest prime factor of k^2+1 is A002313(n), the n-th prime not congruent to 3 mod 4.

Original entry on oeis.org

1, 7, 239, 268, 307, 18543, 2943, 485298, 330182, 478707, 24208144, 22709274, 2189376182, 284862638, 599832943, 19696179, 314198789, 3558066693, 69971515635443, 18986886768, 18710140581, 104279454193
Offset: 1

Views

Author

Keywords

Comments

For any prime p, there are finitely many k such that k^2+1 has p as its largest prime factor.
Numbers k such that k^2+1 is p-smooth appear in arctan-relations for the computation of Pi (for example, Machin's identity Pi/4 = 4*arctan(1/5) - arctan(1/239)), see the fxtbook link. [Joerg Arndt, Jul 02 2012]

Crossrefs

Equivalents for other polynomials: A175607 (k^2 - 1), A145606 (k^2 + k).
Showing 1-10 of 42 results. Next