A223702 Irregular triangle of numbers k such that A002313(n), the n-th prime not congruent to 3 mod 4 is the largest prime factor of k^2 + 1.
1, 2, 3, 7, 5, 8, 18, 57, 239, 4, 13, 21, 38, 47, 268, 12, 17, 41, 70, 99, 157, 307, 6, 31, 43, 68, 117, 191, 302, 327, 882, 18543, 9, 32, 73, 132, 278, 378, 829, 993, 2943, 23, 30, 83, 182, 242, 401, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298
Offset: 1
Examples
Irregular triangle: p | {k} -----+--------------------------------- 2 | {1}, 5 | {2, 3, 7}, 13 | {5, 8, 18, 57, 239}, 17 | {4, 13, 21, 38, 47, 268}, 29 | {12, 17, 41, 70, 99, 157, 307}, 37 | {6, 31, 43, 68, 117, 191, 302, 327, 882, 18543}, 41 | {9, 32, 73, 132, 278, 378, 829, 993, 2943} ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..811 (first 22 rows for primes up to 197)
- Florian Luca, Primitive divisors of Lucas sequences and prime factors of x^2 + 1 and x^4 + 1, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004), pp. 19-24.
- Filip Najman, Smooth values of some quadratic polynomials, Glasnik Matematicki Series III 45 (2010), pp. 347-355
- Filip Najman, List of Publications Page (Adjacent to entry number 7 are links with a data file for the first 22 rows (=811 terms) of this sequence). [As of Dec 2024, the link has the incorrect URL. Should be https://web.math.pmf.unizg.hr/~fnajman/rezplus1.html]
Crossrefs
Programs
-
Mathematica
t = Table[FactorInteger[n^2 + 1][[-1,1]], {n, 10^5}]; Table[Flatten[Position[t, Prime[n]]], {n, 13}]
Extensions
Definition amended by Andrew Howroyd, Dec 22 2024
Comments