cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A175607 Largest number k such that the greatest prime factor of k^2 - 1 is prime(n).

Original entry on oeis.org

3, 17, 161, 8749, 19601, 246401, 672281, 23718421, 10285001, 354365441, 3222617399, 9447152318, 127855050751, 842277599279, 2218993446251, 2907159732049, 41257182408961, 63774701665793, 25640240468751, 238178082107393, 4573663454608289, 19182937474703818751, 34903240221563713, 332110803172167361, 99913980938200001
Offset: 1

Views

Author

Keywords

Comments

For any prime p, there are finitely many k such that k^2-1 has p as its largest prime factor.
For every prime p, is there some k where the greatest prime factor of k^2-1 is p? Answer from Artur Jasinski, Oct 22 2010: Yes.
As mentioned by Luca and Najman, this problem is closely related to the one in A002071.
The terms give an upper bound with a method for the simultaneous computation of logarithms of small primes, see the fxtbook link. - Joerg Arndt, Jul 03 2012

Crossrefs

Cf. A214093 (largest primes p such that the greatest prime factor of p^2-1 is prime(n)).
Cf. A076605 (largest prime divisor of n^2-1).
Cf. A285283 (equivalent for k^2+1). - Tomohiro Yamada, Apr 22 2017
Cf. A006530, A005563. - M. F. Hasler, Jun 13 2018

Programs

  • PARI
    /* up to term for p=97 */
    /* S[] is the list computed by Filip Najman (16223 elements) */
    S=[2,3,4, ... ,332110803172167361, 19182937474703818751];
    lpf(n)={ vecmax(factor(n)[, 1]) } /* largest prime factor */
    { forprime (p=2, 97,
      t = 0;
      for (n=1,#S, if ( lpf(S[n]^2-1)==p, t=n ) );
      print1(S[t],", ");
    );}
    /* Joerg Arndt, Jul 03 2012 */

Extensions

More terms (using Filip Najman's list) by Joerg Arndt, Jul 03 2012

A002071 Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime.

Original entry on oeis.org

1, 4, 10, 23, 40, 68, 108, 167, 241, 345, 482, 653, 869, 1153, 1502, 1930, 2454, 3106, 3896
Offset: 1

Views

Author

Keywords

Comments

Størmer's theorem proves that a(n) is finite. - Charles R Greathouse IV, Feb 19 2013
Also: Number of positive integers x such that x(x+1) is prime(n)-smooth. - M. F. Hasler, Jan 16 2015
Also: Row lengths of A138180; partial sums of A145604. - M. F. Hasler, Jan 16 2015
On an effective abc conjecture (c < rad(abc)^2), we have that a(20)-a(33) is (4839, 6040, 7441, 9179, 11134, 13374, 16167, 19507, 23367, 27949, 33233, 39283, 46166, 54150). - Lucas A. Brown, Oct 16 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A138180 (triangle of x values for each n).
Cf. A285283 (equivalent for x^2 + 1). - Tomohiro Yamada, Apr 22 2017

Programs

  • Mathematica
    (* This program needs x maxima taken from A002072. *) xMaxima = A002072;
    smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; a[n_] := Module[{sn, cnt}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; cnt = 0; Do[If[sn[[i]]+1 == sn[[i+1]], cnt++], {i, 1, Length[sn]-1}]; cnt]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 10 2016 *)
    A002072 = {1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210};
    Table[Length[Select[Table[Max[FactorInteger[x], FactorInteger[x + 1]], {x, A002072[[n]]}], # <= Prime[n] &]], {n, 7}] (* Robert Price, Oct 29 2018 *)
  • PARI
    A002071(n)=[1,4,10,23,40,68,108,167,241,345,482,653,869,1153,1502][n] \\ "practical" solution. - M. F. Hasler, Jan 16 2015
    
  • PARI
    A002071(n,b=A002072,c=1,p=prime(n))={for(k=2,b(n),vecmax(factor(k++,p)[,1])<=p && vecmax(factor(k--+(k<2),p)[,1])<=p && c++); c} \\ b can be any upper bound for A002072, e.g., n->10^n should work, too. - M. F. Hasler, Jan 16 2015

Formula

a(n) <= (2^n-1)*(prime(n)+1)/2 is implicit in Lehmer 1964. - Charles R Greathouse IV, Feb 19 2013

Extensions

Better description and more terms from David Eppstein, Mar 23 2007
a(16) from Jean-François Alcover, Nov 10 2016
a(17)-a(18) from Lucas A. Brown, Aug 23 2020
a(19) from Lucas A. Brown, Oct 16 2022

A223702 Irregular triangle of numbers k such that A002313(n), the n-th prime not congruent to 3 mod 4 is the largest prime factor of k^2 + 1.

Original entry on oeis.org

1, 2, 3, 7, 5, 8, 18, 57, 239, 4, 13, 21, 38, 47, 268, 12, 17, 41, 70, 99, 157, 307, 6, 31, 43, 68, 117, 191, 302, 327, 882, 18543, 9, 32, 73, 132, 278, 378, 829, 993, 2943, 23, 30, 83, 182, 242, 401, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that primes of the form 4x+3 are not divisors.

Examples

			Irregular triangle:
   p | {k}
-----+---------------------------------
   2 | {1},
   5 | {2, 3, 7},
  13 | {5, 8, 18, 57, 239},
  17 | {4, 13, 21, 38, 47, 268},
  29 | {12, 17, 41, 70, 99, 157, 307},
  37 | {6, 31, 43, 68, 117, 191, 302, 327, 882, 18543},
  41 | {9, 32, 73, 132, 278, 378, 829, 993, 2943}
  ...
		

Crossrefs

Cf. A002313, A014442, A177979 (first terms), A185389 (last terms), A223705, A285283, A379346 (row lengths), A379347 (row sums).
Cf. A223701, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 + 1][[-1,1]], {n, 10^5}]; Table[Flatten[Position[t, Prime[n]]], {n, 13}]

Extensions

Definition amended by Andrew Howroyd, Dec 22 2024

A379346 Number of integers of the form k^2 + 1 whose greatest prime factor is A002313(n), the n-th prime not congruent to 3 mod 4.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 9, 16, 17, 20, 26, 36, 36, 40, 46, 47, 56, 67, 73, 86, 97, 107
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2024

Keywords

Comments

See A223702 for additional information.

Crossrefs

Row lengths of A223702.
First differences of A285283.

A285523 Numbers n such that n^2 + 1 is 100-smooth.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 21, 22, 23, 27, 30, 31, 32, 34, 38, 41, 43, 46, 47, 50, 55, 57, 68, 70, 72, 73, 75, 83, 99, 117, 119, 123, 132, 133, 157, 172, 173, 182, 191, 216, 233, 239, 242, 255, 265, 268, 278, 302, 307, 319, 327, 378, 401, 411, 438, 447
Offset: 1

Views

Author

Tomohiro Yamada, Apr 22 2017

Keywords

Comments

Equivalently: Numbers n such that all prime factors of n^2 + 1 are <= 97.
Since an odd prime factor of n^2 + 1 must be of the form 4m + 1, n^2 + 1 must be of the form 2^t*5^a*13^b*17^c*29^d*37^e*41^f*53^g*61^h*73^i*89^j*97^k, with t = 0 or 1.
Luca determined all terms.

Examples

			157^2 + 1 = 2*5^2*17*29 so 157 is a term.
		

Crossrefs

Cf. A285282 (n^2 + 1 is 13-smooth), A285283.

Programs

  • PARI
    isok(n) = vecmax(factor(n^2+1)[,1]) <= 100; \\ Michel Marcus, Apr 23 2017
Showing 1-5 of 5 results.