A175607
Largest number k such that the greatest prime factor of k^2 - 1 is prime(n).
Original entry on oeis.org
3, 17, 161, 8749, 19601, 246401, 672281, 23718421, 10285001, 354365441, 3222617399, 9447152318, 127855050751, 842277599279, 2218993446251, 2907159732049, 41257182408961, 63774701665793, 25640240468751, 238178082107393, 4573663454608289, 19182937474703818751, 34903240221563713, 332110803172167361, 99913980938200001
Offset: 1
Cf.
A214093 (largest primes p such that the greatest prime factor of p^2-1 is prime(n)).
Cf.
A076605 (largest prime divisor of n^2-1).
-
/* up to term for p=97 */
/* S[] is the list computed by Filip Najman (16223 elements) */
S=[2,3,4, ... ,332110803172167361, 19182937474703818751];
lpf(n)={ vecmax(factor(n)[, 1]) } /* largest prime factor */
{ forprime (p=2, 97,
t = 0;
for (n=1,#S, if ( lpf(S[n]^2-1)==p, t=n ) );
print1(S[t],", ");
);}
/* Joerg Arndt, Jul 03 2012 */
More terms (using Filip Najman's list) by
Joerg Arndt, Jul 03 2012
A085152
All prime factors of n and n+1 are <= 5. (Related to the abc conjecture.)
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 15, 24, 80
Offset: 1
-
Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 5 &] (* T. D. Noe, Mar 03 2008 *)
-
for(n=1,99,vecmax(factor(n++)[,1])<6 && vecmax(factor(n--+(n<2))[,1])<6 && print1(n", ")) \\ This skips 2 if n+1 is not 5-smooth: twice as fast as the naive version. - M. F. Hasler, Jan 16 2015
A085153
All prime factors of n and n+1 are <= 7. (Related to the abc conjecture.)
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374
Offset: 1
-
Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 7 &] (* T. D. Noe, Mar 03 2008 *)
-
for(n=1,9e6,vecmax(factor(n++)[,1])<8 && vecmax(factor(n--+(n<2))[,1])<8 && print1(n",")) \\ M. F. Hasler, Jan 16 2015
A002072
a(n) = smallest number m such that for all k > m, either k or k+1 has a prime factor > prime(n).
Original entry on oeis.org
1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 31887350832896, 119089041053696, 2286831727304144, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 19316158377073923834000
Offset: 1
a(1) = 1 since for any number k greater than 1, it is impossible that k and k+1 both are powers of 2, so at least one of them has a prime factor > 2. (For m = 0 this would not hold for k = 1, k+1 = 2.)
a(2) = 8 since for any larger k, we cannot have k and k+1 both 3-smooth (cf. A003586).
31887350832897 = 3^9*7*37*41^2*61^2, 31887350832896 = 2^8*13*19*23*29^4*31, this number appears twice because there is no pair of numbers with max. factor = 67 that is larger than this number.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Lucas A. Brown, Python program.
- E. F. Ecklund and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79 (1972), 1082-1089.
- D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57-79.
- Don Reble, Python program
- Jim White, Results to P = 127
- Wikipedia, Størmer's theorem
-
smoothNumbers[p_?PrimeQ, max_Integer] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand[Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]] }, {j, 1, k}]; Sort[Flatten[Table[Times @@ (pp^aa), Evaluate[ Sequence @@ iter]]]]]; a[n_] := Module[{sn = smoothNumbers[Prime[n], Ceiling[2000 + 10^n/n]], pos}, pos = Position[Differences[sn], 1][[-1, 1]]; sn[[pos]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 17 2016, after M. F. Hasler's observation *)
-
A002072(n, a=[1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024])=a[n] \\ "practical" solution for use in other sequences, easily extended to more values. - M. F. Hasler, Jan 16 2015
-
A2072=List(1); A002072(n)={while(#A2072 best && isSmooth(sol, P) && isSmooth(sol+1, P) && best=sol, p=primes([1, P])); for(i=1, 2^#p, i==2 && next; my(qq = 2*vecprod(vecextract(p,i-1)), qn = [qq, sqrtint(qq), 0, 1], cf = [1,0,0,1], xi, aa, x0, x1, y0, y1); until(x0, aa = (qn[2]+qn[3])\qn[4]; qn[3] = aa*qn[4] - qn[3]; qn[4] = (qn[1] - qn[3]^2) \ qn[4]; cf = [aa*cf[1]+cf[3], aa*cf[2]+cf[4], cf[1], cf[2]]; cf[1]^2 - qq*cf[2]^2 == 1 && [x0,x1, y0,y1] = [x1, cf[1], y1, cf[2]] ); isSmooth(y0, P) || next; check(xi = x0); check(x1); for (i=3, max(P\/2, 3), [x0, x1] = [x1, x1 * xi * 2 - x0]; check(x1)))/*for i*/; listput(A2072, best) } \\ Following Don Reble's Python program. - M. F. Hasler, Mar 01 2025
Corrected and extended by
Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations.
A138180
Irregular triangle read by rows: row n consists of all numbers x such that x and x+1 have no prime factor larger than prime(n).
Original entry on oeis.org
1, 1, 2, 3, 8, 1, 2, 3, 4, 5, 8, 9, 15, 24, 80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539
Offset: 1
The table reads:
1,
1, 2, 3, 8,
1, 2, 3, 4, 5, 8, 9, 15, 24, 80, (= A085152)
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, (= A085153)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800 (= A252494),
...
-
(* This program needs x maxima taken from A002072. *) xMaxima = A002072; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; row[n_] := Module[{sn}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; Reap[Do[If[sn[[i]]+1 == sn[[i+1]], Sow[sn[[i]]]], {i, 1, Length[sn]-1}]][[2, 1]]]; Table[Print[n]; row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 16 2015, updated Nov 10 2016 *)
-
A138180_row=[]; A138180(n,k)={if(k, A138180(n)[k], #A138180_rowA138180_row=concat(A138180_row,vector(n)); if(#A138180_row[n], A138180_row[n], k=0; p=prime(n); A138180_row[n]=vector(A002071(n),i, until( vecmax(factor(k++)[, 1])<=p && vecmax(factor(k--+(k<2))[, 1])<=p,k++); k)))} \\ A138180(n) (w/o 2nd arg. k) returns the whole row. - M. F. Hasler, Jan 16 2015
A145604
Number of pairs of consecutive integers x, x+1 such that both are prime(n)-smooth but both are not prime(n-1)-smooth.
Original entry on oeis.org
1, 3, 6, 13, 17, 28, 40, 59, 74, 104, 137, 171, 216, 284, 349, 428, 524, 652, 790
Offset: 1
A252493
Numbers n such that n(n+1) is 13-smooth. (Related to the abc conjecture.)
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 32, 35, 39, 44, 48, 49, 54, 55, 63, 64, 65, 77, 80, 90, 98, 99, 104, 120, 125, 143, 168, 175, 195, 224, 242, 324, 350, 351, 363, 384, 440, 539, 624, 675, 728, 1000, 1715, 2079, 2400, 3024, 4095, 4224, 4374, 6655, 9800, 10647, 123200
Offset: 1
-
N:= 130000: # to get all entries <= N
f:= proc(n)
uses padic;
evalb(2^ordp(n,2)*3^ordp(n,3)*5^ordp(n,5)*7^ordp(n,7)*11^ordp(n,11)*13^ordp(n,13) = n)
end proc:
L:= map(f, [$1..N+1]):
select(t -> L[t] and L[t+1], [$1..N]); # Robert Israel, Jan 16 2015
-
Select[Range[123456], FactorInteger[ # (# + 1)][[ -1,1]] <= 13 &]
-
for(n=1,123456, vecmax(factor(n++,13)[,1])<17 && vecmax(factor(n--+(n<2),13))<17 && print1(n",")) \\ Skips the next n if n+1 is not 13-smooth: Twice as fast as the naïve version. Instead of vecmax(.)<17 one could use is_A080197().
A252492
The largest prime factor of n*(n+1) equals 17. (Related to the abc conjecture.)
Original entry on oeis.org
16, 17, 33, 34, 50, 51, 84, 119, 135, 153, 169, 220, 255, 272, 288, 374, 441, 560, 594, 714, 832, 935, 1088, 1155, 1224, 1274, 1700, 2057, 2430, 2499, 2600, 4913, 5831, 12375, 14399, 28560, 31212, 37179, 194480, 336140
Offset: 1
-
Select[Range[345678], FactorInteger[ # (# + 1)][[ -1,1]] == 17 &]
-
for(n=1,9e6,vecmax(factor(n++)[,1])<18 && vecmax(factor(n*n--)[,1])==17 && print1(n",")) \\ Skips 2 if n+1 is not 17-smooth: Twice as fast as the naïve version.
A117581
For each successive prime p, the largest integer n such that both n and n-1 factor into primes less than or equal to p.
Original entry on oeis.org
2, 9, 81, 4375, 9801, 123201, 336141, 11859211, 11859211, 177182721, 1611308700, 3463200000, 63927525376, 421138799640, 1109496723126, 1453579866025, 20628591204481, 31887350832897, 31887350832897, 119089041053697, 2286831727304145, 9591468737351909376, 9591468737351909376, 9591468737351909376, 9591468737351909376, 9591468737351909376, 19316158377073923834001
Offset: 1
Corrected and extended by
Don Reble, Nov 21 2006
A252494
Numbers n such that all prime factors of n and n+1 are <= 11. (Related to the abc conjecture.)
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800
Offset: 1
-
Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 11 &]
-
for(n=1,9e6,vecmax(factor(n++)[,1])<12 && vecmax(factor(n--+(n<2))[,1])<12 && print1(n",")) \\ Skips 2 if n+1 is not 11-smooth: Twice as fast as the naive version.
Showing 1-10 of 17 results.
Comments