cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A051037 5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
Offset: 1

Views

Author

Keywords

Comments

Sometimes called the Hamming sequence, since Hamming asked for an efficient algorithm to generate the list, in ascending order, of all numbers of the form 2^i*3^j*5^k for i,j,k >= 0. The problem was popularized by Edsger Dijkstra.
Numbers k such that 8*k = EulerPhi(30*k). - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A165704: A165705(n) = A165704(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also called "harmonic whole numbers", see Howard and Longair, 1982, Table I, page 121. - Hugo Pfoertner, Jul 16 2020
Also called ugly numbers, although it is not clear why. - Gus Wiseman, May 21 2021
Some woody bamboo species have extraordinarily long and stable flowering intervals that belong to this sequence. The model by Veller, Nowak & Davis justifies this observation from the evolutionary point of view. - Andrey Zabolotskiy, Jun 27 2021
Also those integers k for which, for every prime p > 5, p^(4*k) - 1 == 0 (mod 240*k). - Federico Provvedi, May 23 2022
As noted in the comments to A085152, Størmer's theorem implies that the only pairs of consecutive integers that appear as consecutive terms of this sequence are (1,2), (2,3), (3,4), (4,5), (5,6), (8,9), (9,10), (15,16), (24,25), and (80,81). These all represent significant musical intervals. - Hal M. Switkay, Dec 05 2022

Examples

			From _Gus Wiseman_, May 21 2021: (Start)
The sequence of terms together with their prime indices begins:
      1: {}            25: {3,3}
      2: {1}           27: {2,2,2}
      3: {2}           30: {1,2,3}
      4: {1,1}         32: {1,1,1,1,1}
      5: {3}           36: {1,1,2,2}
      6: {1,2}         40: {1,1,1,3}
      8: {1,1,1}       45: {2,2,3}
      9: {2,2}         48: {1,1,1,1,2}
     10: {1,3}         50: {1,3,3}
     12: {1,1,2}       54: {1,2,2,2}
     15: {2,3}         60: {1,1,2,3}
     16: {1,1,1,1}     64: {1,1,1,1,1,1}
     18: {1,2,2}       72: {1,1,1,2,2}
     20: {1,1,3}       75: {2,3,3}
     24: {1,1,1,2}     80: {1,1,1,1,3}
(End)
		

Crossrefs

Subsequences: A003592, A003593, A051916 , A257997.
For p-smooth numbers with other values of p, see A003586, A002473, A051038, A080197, A080681, A080682, A080683.
The partitions with these Heinz numbers are counted by A001399.
The conjugate opposite is A033942, counted by A004250.
The opposite is A059485, counted by A004250.
The non-3-smooth case is A080193, counted by A069905.
The conjugate is A037144, counted by A001399.
The complement is A279622, counted by A035300.
Requiring the sum of prime indices to be even gives A344297.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a051037 n = a051037_list !! (n-1)
    a051037_list = f $ singleton 1 where
       f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s')
                   where (y, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 16 2015
    
  • Magma
    [n: n in [1..500] | PrimeDivisors(n) subset [2,3,5]]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    A051037 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                numtheory[factorset](a) minus {2, 3,5 } ;
                if % = {} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A051037(n),n=1..100) ; # R. J. Mathar, Nov 05 2017
  • Mathematica
    mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *)
    Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *)
    With[{nn=10},Select[Union[Times@@@Flatten[Table[Tuples[{2,3,5},n],{n,0,nn}],1]],#<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
  • PARI
    test(n)= {m=n; forprime(p=2,5, while(m%p==0,m=m/p)); return(m==1)}
    for(n=1,500,if(test(n),print1(n",")))
    
  • PARI
    a(n)=local(m); if(n<1,0,n=a(n-1); until(if(m=n, forprime(p=2,5, while(m%p==0,m/=p)); m==1),n++); n)
    
  • PARI
    list(lim)=my(v=List(),s,t); for(i=0,logint(lim\=1,5), t=5^i; for(j=0,logint(lim\t,3), s=t*3^j; while(s<=lim, listput(v,s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
    
  • PARI
    smooth(P:vec,lim)={ my(v=List([1]),nxt=vector(#P,i,1),indx,t);
    while(1, t=vecmin(vector(#P,i,v[nxt[i]]*P[i]),&indx);
    if(t>lim,break); if(t>v[#v],listput(v,t)); nxt[indx]++);
    Vec(v)
    };
    smooth([2,3,5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
    
  • PARI
    is_A051037(n)=n<7||vecmax(factor(n,6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
    
  • Python
    def isok(n):
      while n & 1 == 0: n >>= 1
      while n % 3 == 0: n //= 3
      while n % 5 == 0: n //= 5
      return n == 1 #  Darío Clavijo, Dec 30 2022
    
  • Python
    from sympy import integer_log
    def A051037(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(y:=x//5**i,3)[0]+1):
                    c -= (y//3**j).bit_length()
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A051037gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                        heapq.heappush(h, v*p)
    print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

Let s(n) = Card(k | a(k)Benoit Cloitre, Dec 30 2001
The characteristic function of this sequence is given by:
Sum_{n>=1} x^a(n) = Sum_{n>=1} -Möbius(30*n)*x^n/(1-x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A143207(n) / 30. - Reinhard Zumkeller, Sep 13 2011
A204455(15*a(n)) = 15, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
A006530(a(n)) <= 5. - Reinhard Zumkeller, May 16 2015
Sum_{n>=1} 1/a(n) = Product_{primes p <= 5} p/(p-1) = (2*3*5)/(1*2*4) = 15/4. - Amiram Eldar, Sep 22 2020

A085153 All prime factors of n and n+1 are <= 7. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Comments

The ABC conjecture would imply that if the prime factors of A, B, C are prescribed in advance, then there is only a finite number of solutions to the equation A + B = C with gcd(A,B,C)=1 (indeed it would bound C to be no more than "roughly" the product of those primes). So in particular there ought to be only finitely many pairs of adjacent integers whose prime factors are limited to {2, 3, 5, 7} (D. Rusin).
This sequence is complete by a theorem of Stormer. See A002071. - T. D. Noe, Mar 03 2008
This is the 4th row of the table A138180. It has 23=A002071(4)=A145604(1)+...+ A145604(4) terms and ends with A002072(4)=4374. It is the union of all terms in rows 1 through 4 of the table A145605. It is a subsequence of A252494 and contains A085152 as a subsequence. - M. F. Hasler, Jan 16 2015
Equivalently, this is the sequence of numbers for which A074399(n) <= 7, or A252489(n) <= 4.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 7 &] (* T. D. Noe, Mar 03 2008 *)
  • PARI
    for(n=1,9e6,vecmax(factor(n++)[,1])<8 && vecmax(factor(n--+(n<2))[,1])<8 && print1(n",")) \\ M. F. Hasler, Jan 16 2015

Extensions

Edited by Dean Hickerson, Jun 30 2003

A147298 Minimum of rad(m (n - m) n) for 0 < m < n, gcd(m,n) = 1, where rad(k) = A007947(k) = product of prime factors of k.

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 66, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 322, 138, 30, 130, 30, 42, 174, 870, 186, 30, 66, 510, 210, 210, 222, 1254, 546, 390, 246, 1722, 258, 946, 330, 690, 1410, 282, 42, 70, 510, 390, 742, 210, 330, 770, 570, 1218
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

Function rad(k) is used in ABC conjecture applications.
For biggest values of function rad(m n (n - m)) see A147299.
For numbers m for which rad(m n (n - m)) reached minimal value see A147300.
For numbers m for which rad(m n (n - m)) reached maximal value see A147301.
Sequence in each value Log[n]/Log[A147298(n)] reached records see A147302.

Crossrefs

Programs

  • Maple
    A147298 := proc(n) local rad, g, L;
    rad := n -> mul(k, k in numtheory:-factorset(n)):
    g := (n, k) -> `if`(igcd(n, k) = 1, 1, infinity):
    L := n -> [seq(g(n,k)*rad(n*k*(n-k)), k=1..n/2)]:
    min(L(n)) end: seq(A147298(n), n=2..58); # Peter Luschny, Aug 06 2019
  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; aa (*Artur Jasinski*)
    Table[Min[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Select[Range[1, n - 1], GCD[n, #] == 1 &])*(n - m)*n)], {n, 2, 58}] (* Ivan Neretin, May 21 2015 *)
  • PARI
    A147298(n)= local(m=n^2); for( a=1,n\2, gcd(a,n)>1 && next; A007947(n-a)*A007947(a)A007947(n-a)*A007947(a)); m*A007947(n)

A147307 Numbers A of the constrained search for ABC records described in A147306.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 19, 41, 125, 23, 1, 1, 1, 95
Offset: 1

Views

Author

Artur Jasinski, Nov 09 2008

Keywords

Comments

The sequences A147305, a(n) and A147307 are steered by searching for records in the ABC conjecture along increasing C confined as described in A147306, the main entry for these three sequences.

Crossrefs

Formula

a(n)+A147305(n) = A147306(n). gcd(a(n),A147305(n))=1.

Extensions

Edited by R. J. Mathar, Aug 24 2009

A002071 Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime.

Original entry on oeis.org

1, 4, 10, 23, 40, 68, 108, 167, 241, 345, 482, 653, 869, 1153, 1502, 1930, 2454, 3106, 3896
Offset: 1

Views

Author

Keywords

Comments

Størmer's theorem proves that a(n) is finite. - Charles R Greathouse IV, Feb 19 2013
Also: Number of positive integers x such that x(x+1) is prime(n)-smooth. - M. F. Hasler, Jan 16 2015
Also: Row lengths of A138180; partial sums of A145604. - M. F. Hasler, Jan 16 2015
On an effective abc conjecture (c < rad(abc)^2), we have that a(20)-a(33) is (4839, 6040, 7441, 9179, 11134, 13374, 16167, 19507, 23367, 27949, 33233, 39283, 46166, 54150). - Lucas A. Brown, Oct 16 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A138180 (triangle of x values for each n).
Cf. A285283 (equivalent for x^2 + 1). - Tomohiro Yamada, Apr 22 2017

Programs

  • Mathematica
    (* This program needs x maxima taken from A002072. *) xMaxima = A002072;
    smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; a[n_] := Module[{sn, cnt}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; cnt = 0; Do[If[sn[[i]]+1 == sn[[i+1]], cnt++], {i, 1, Length[sn]-1}]; cnt]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 10 2016 *)
    A002072 = {1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210};
    Table[Length[Select[Table[Max[FactorInteger[x], FactorInteger[x + 1]], {x, A002072[[n]]}], # <= Prime[n] &]], {n, 7}] (* Robert Price, Oct 29 2018 *)
  • PARI
    A002071(n)=[1,4,10,23,40,68,108,167,241,345,482,653,869,1153,1502][n] \\ "practical" solution. - M. F. Hasler, Jan 16 2015
    
  • PARI
    A002071(n,b=A002072,c=1,p=prime(n))={for(k=2,b(n),vecmax(factor(k++,p)[,1])<=p && vecmax(factor(k--+(k<2),p)[,1])<=p && c++); c} \\ b can be any upper bound for A002072, e.g., n->10^n should work, too. - M. F. Hasler, Jan 16 2015

Formula

a(n) <= (2^n-1)*(prime(n)+1)/2 is implicit in Lehmer 1964. - Charles R Greathouse IV, Feb 19 2013

Extensions

Better description and more terms from David Eppstein, Mar 23 2007
a(16) from Jean-François Alcover, Nov 10 2016
a(17)-a(18) from Lucas A. Brown, Aug 23 2020
a(19) from Lucas A. Brown, Oct 16 2022

A120498 Numbers C from the ABC conjecture.

Original entry on oeis.org

9, 32, 49, 64, 81, 125, 128, 225, 243, 245, 250, 256, 289, 343, 375, 512, 513, 539, 625, 676, 729, 961, 968, 1025, 1029, 1216, 1331, 1369, 1587, 1681, 2048, 2057, 2187, 2197, 2304, 2312, 2401, 2500, 2673, 3025, 3072, 3125, 3136, 3211, 3481, 3584, 3773, 3888
Offset: 1

Views

Author

R. J. Mathar, Aug 06 2006

Keywords

Comments

C-values are not repeated: (A,B,C)=(13,243,256) and (A,B,C)=(81,175,256) are only represented once, by 256, in the list, for example.

Examples

			For A=1, B=63 and C=64, C=64 is in the list because 1 and 63 are coprime,
because the set of prime factors of 1, 63=3^2*7 and 64=2^6 has the product
of prime factors 3*2*7=42 and this product is smaller than 64.
		

Crossrefs

Cf. A130510 (values of c in the list of "abc-hits").

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; isABC[a_, b_, c_] := (If[a + b != c || GCD[a, b] != 1, Return[0]]; r = rad[a*b*c]; If[r < c, Return[1], Return[0]]); isC[c_] := (For[a = 1, a <= Floor[c/2], a++, If[isABC[a, c - a, c] != 0, Return[1]]]; Return[0]); Select[Range[4000], isC[#] == 1 & ] (* Jean-François Alcover, Jun 24 2013, translated and adapted from Pari *)
  • PARI
    isABC(a,b,c)={ a+b==c && gcd(a,b)==1 && A007947(a*b*c)M. F. Hasler, Jan 16 2015
    isC(c)={ for(a=1, floor(c/2), if( isABC(a,c-a,c), return(1) )); return(0); }
    { for(n=1,6000, if( isC(n), print1(n,","))) }
    
  • PARI
    is_A120498(c)={for(a=1,c\2, gcd(a,c-a)==1 && A007947(a*(c-a)*c)M. F. Hasler, Jan 16 2015
    
  • Python
    from itertools import count, islice
    from math import prod, gcd
    from sympy import primefactors
    def A120498_gen(startvalue=1): # generator of terms >= startvalue
        for c in count(max(startvalue,1)):
            pc = set(primefactors(c))
            for a in range(1,(c>>1)+1):
                b = c-a
                if gcd(a,b)==1 and c>prod(set(primefactors(a))|set(primefactors(b))|pc):
                    yield c
                    break
    A120498_list = list(islice(A120498_gen(),30)) # Chai Wah Wu, Oct 19 2023

Formula

A+B=C; gcd(A,B)=1; A007947(A*B*C) < C.

A147638 The numbers B associated with the search for records in the ABC conjecture constrained as described in A147639.

Original entry on oeis.org

3, 7, 15, 27, 63, 125, 1701
Offset: 1

Views

Author

Artur Jasinski, Nov 09 2008

Keywords

Comments

The standard way to search for records in the ABC conjecture is to run with the C parameter through all the integers A000027. If this search space is diluted by admitting only powers of 2 as in A147639, the sequence of records changes. This sequence here lists the B such that the triples (A=A147640(n), B=a(n), C=A147639(n)) locate records for this search restricting C to powers of 2.

Crossrefs

Extensions

Definition and commend edited by R. J. Mathar, Aug 28 2009

A138180 Irregular triangle read by rows: row n consists of all numbers x such that x and x+1 have no prime factor larger than prime(n).

Original entry on oeis.org

1, 1, 2, 3, 8, 1, 2, 3, 4, 5, 8, 9, 15, 24, 80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539
Offset: 1

Views

Author

T. D. Noe, Mar 04 2008

Keywords

Comments

A number x is p-smooth if all prime factors of x are <= p. The length of row n is A002071(n). Row n begins with 1 and ends with A002072(n). Each term of row n-1 is in row n.
The n-th row is the union of the rows 1 to n of A145605. - M. F. Hasler, Jan 18 2015

Examples

			The table reads:
1,
1, 2, 3, 8,
1, 2, 3, 4, 5, 8, 9, 15, 24, 80,  (= A085152)
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, (= A085153)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800 (= A252494),
...
		

References

Crossrefs

Programs

  • Mathematica
    (* This program needs x maxima taken from A002072. *) xMaxima = A002072; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; row[n_] := Module[{sn}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; Reap[Do[If[sn[[i]]+1 == sn[[i+1]], Sow[sn[[i]]]], {i, 1, Length[sn]-1}]][[2, 1]]]; Table[Print[n]; row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 16 2015, updated Nov 10 2016 *)
  • PARI
    A138180_row=[]; A138180(n,k)={if(k, A138180(n)[k], #A138180_rowA138180_row=concat(A138180_row,vector(n)); if(#A138180_row[n], A138180_row[n], k=0; p=prime(n); A138180_row[n]=vector(A002071(n),i, until( vecmax(factor(k++)[, 1])<=p && vecmax(factor(k--+(k<2))[, 1])<=p,k++); k)))} \\ A138180(n) (w/o 2nd arg. k) returns the whole row. - M. F. Hasler, Jan 16 2015

A147300 a(n) = smallest value of parameter m such that the function rad(m*n*(n - m)) has minimal value n=2,3,4,..., 0 < m < n where the function rad(k) (also called radical(k)) is the product of distinct prime divisors of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 2, 1, 2, 1, 4, 5, 1, 9, 3, 1, 1, 11, 7, 1, 9, 1, 16, 1, 1, 1, 2, 1, 1, 1, 1, 25, 4, 5, 1, 1, 25, 9, 27, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 7, 1, 1, 25, 11, 1, 13, 1, 4, 1, 1, 1, 2, 1, 4, 5, 23, 7, 8, 1, 27, 11, 1, 13, 14, 1, 1, 17, 1, 1
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

The function rad(k) is used in ABC conjecture applications.
For smallest values of the function rad(m n (n - m)) see A147298.
For the largest values of the function rad(m n (n - m)) see A147299.
For numbers m at which rad(m*n*(n - m)) reaches minimal value see A147300.
For numbers m at which rad(m*n*(n - m)) reaches maximal value see A147301.
For sequence in which each value log(n)/log(A147298(n)) reaches records see A147302.

Crossrefs

Programs

  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; dd (* Artur Jasinski *)

A147302 Numbers k where records occur in the expression log(k) / log(A147298(k)).

Original entry on oeis.org

2, 9, 81, 128, 2401, 4375, 6436343
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

Numbers a(n) such that a(n)/R(m a(n)(a(n)-m)) > a(n-1)/R(g a(n-1)(a(n-1)-g)) 0 < m < a(n) and 0 < g < a(n-1).
This sequence is list of successive records in the abc conjecture.
No more terms up to 10^20.
For smallest values of function rad(m*n*(n-m)) see A147298.
For biggest values of function rad(m*n*(n-m)) see A147299.
For numbers m for which rad(m*n*(n-m)) reaches a minimal value see A147300.
For numbers m for which rad(m*n*(n-m)) reaches a maximal value see A147301.

Crossrefs

Programs

  • Mathematica
    logmax = 0; aa = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[aa, n]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 2500}]; aa
Showing 1-10 of 30 results. Next