cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002072 a(n) = smallest number m such that for all k > m, either k or k+1 has a prime factor > prime(n).

Original entry on oeis.org

1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 31887350832896, 119089041053696, 2286831727304144, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 9591468737351909375, 19316158377073923834000
Offset: 1

Views

Author

Keywords

Comments

An effective abc conjecture (c < rad(abc)^2) would imply that a(27) = a(28) = ... = a(32), and a(33) = 124225935845233319439173. - Lucas A. Brown, Sep 20 2020

Examples

			a(1) = 1 since for any number k greater than 1, it is impossible that k and k+1 both are powers of 2, so at least one of them has a prime factor > 2. (For m = 0 this would not hold for k = 1, k+1 = 2.)
a(2) = 8 since for any larger k, we cannot have k and k+1 both 3-smooth (cf. A003586).
31887350832897 = 3^9*7*37*41^2*61^2, 31887350832896 = 2^8*13*19*23*29^4*31, this number appears twice because there is no pair of numbers with max. factor = 67 that is larger than this number.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    smoothNumbers[p_?PrimeQ, max_Integer] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand[Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]] }, {j, 1, k}]; Sort[Flatten[Table[Times @@ (pp^aa), Evaluate[ Sequence @@ iter]]]]]; a[n_] := Module[{sn = smoothNumbers[Prime[n], Ceiling[2000 + 10^n/n]], pos}, pos = Position[Differences[sn], 1][[-1, 1]]; sn[[pos]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 17 2016, after M. F. Hasler's observation *)
  • PARI
    A002072(n, a=[1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024])=a[n] \\ "practical" solution for use in other sequences, easily extended to more values. - M. F. Hasler, Jan 16 2015
    
  • PARI
    A2072=List(1); A002072(n)={while(#A2072 best && isSmooth(sol, P) && isSmooth(sol+1, P) && best=sol, p=primes([1, P])); for(i=1, 2^#p, i==2 && next; my(qq = 2*vecprod(vecextract(p,i-1)), qn = [qq, sqrtint(qq), 0, 1], cf = [1,0,0,1], xi, aa, x0, x1, y0, y1); until(x0, aa = (qn[2]+qn[3])\qn[4]; qn[3] = aa*qn[4] - qn[3]; qn[4] = (qn[1] - qn[3]^2) \ qn[4]; cf = [aa*cf[1]+cf[3], aa*cf[2]+cf[4], cf[1], cf[2]]; cf[1]^2 - qq*cf[2]^2 == 1 && [x0,x1, y0,y1] = [x1, cf[1], y1, cf[2]] ); isSmooth(y0, P) || next; check(xi = x0); check(x1); for (i=3, max(P\/2, 3), [x0, x1] = [x1, x1 * xi * 2 - x0]; check(x1)))/*for i*/; listput(A2072, best) } \\ Following Don Reble's Python program. - M. F. Hasler, Mar 01 2025

Formula

a(n) < 10^n/n except for n=4. (Conjectured, from experimental data.) - M. F. Hasler, Jan 16 2015

Extensions

More terms from Don Reble, Jan 11 2005
a(18)-a(26) from Fred Schneider, Sep 09 2006
Corrected and extended by Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations.

A002071 Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime.

Original entry on oeis.org

1, 4, 10, 23, 40, 68, 108, 167, 241, 345, 482, 653, 869, 1153, 1502, 1930, 2454, 3106, 3896
Offset: 1

Views

Author

Keywords

Comments

Størmer's theorem proves that a(n) is finite. - Charles R Greathouse IV, Feb 19 2013
Also: Number of positive integers x such that x(x+1) is prime(n)-smooth. - M. F. Hasler, Jan 16 2015
Also: Row lengths of A138180; partial sums of A145604. - M. F. Hasler, Jan 16 2015
On an effective abc conjecture (c < rad(abc)^2), we have that a(20)-a(33) is (4839, 6040, 7441, 9179, 11134, 13374, 16167, 19507, 23367, 27949, 33233, 39283, 46166, 54150). - Lucas A. Brown, Oct 16 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A138180 (triangle of x values for each n).
Cf. A285283 (equivalent for x^2 + 1). - Tomohiro Yamada, Apr 22 2017

Programs

  • Mathematica
    (* This program needs x maxima taken from A002072. *) xMaxima = A002072;
    smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; a[n_] := Module[{sn, cnt}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; cnt = 0; Do[If[sn[[i]]+1 == sn[[i+1]], cnt++], {i, 1, Length[sn]-1}]; cnt]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 10 2016 *)
    A002072 = {1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210};
    Table[Length[Select[Table[Max[FactorInteger[x], FactorInteger[x + 1]], {x, A002072[[n]]}], # <= Prime[n] &]], {n, 7}] (* Robert Price, Oct 29 2018 *)
  • PARI
    A002071(n)=[1,4,10,23,40,68,108,167,241,345,482,653,869,1153,1502][n] \\ "practical" solution. - M. F. Hasler, Jan 16 2015
    
  • PARI
    A002071(n,b=A002072,c=1,p=prime(n))={for(k=2,b(n),vecmax(factor(k++,p)[,1])<=p && vecmax(factor(k--+(k<2),p)[,1])<=p && c++); c} \\ b can be any upper bound for A002072, e.g., n->10^n should work, too. - M. F. Hasler, Jan 16 2015

Formula

a(n) <= (2^n-1)*(prime(n)+1)/2 is implicit in Lehmer 1964. - Charles R Greathouse IV, Feb 19 2013

Extensions

Better description and more terms from David Eppstein, Mar 23 2007
a(16) from Jean-François Alcover, Nov 10 2016
a(17)-a(18) from Lucas A. Brown, Aug 23 2020
a(19) from Lucas A. Brown, Oct 16 2022

A145605 Irregular triangle in which row n consists of all numbers x such that x and x+1 are both prime(n)-smooth numbers but not both prime(n-1)-smooth.

Original entry on oeis.org

1, 2, 3, 8, 4, 5, 9, 15, 24, 80, 6, 7, 14, 20, 27, 35, 48, 49, 63, 125, 224, 2400, 4374, 10, 11, 21, 32, 44, 54, 55, 98, 99, 120, 175, 242, 384, 440, 539, 3024, 9800, 12, 13, 25, 26, 39, 64, 65, 77, 90, 104, 143, 168, 195, 324, 350, 351, 363, 624, 675, 728, 1000, 1715
Offset: 1

Views

Author

T. D. Noe, Oct 14 2008, Nov 03 2008

Keywords

Comments

The length of row n is A145604(n). The largest x in row n is A145606(n). This is sequence A138180 with only the first occurrence of each number retained. Row n begins with prime(n)-1.
A permutation of the positive integers (when seen as linear sequence). A252489(n) yields the row in which n appears in the table. - M. F. Hasler, Jan 16 2015

Examples

			1
2, 3, 8
4, 5, 9, 15, 24, 80
6, 7, 14, 20, 27, 35, 48, 49, 63, 125, 224, 2400, 4374
		

Programs

  • Mathematica
    (* Computation using x maxima taken from A145606 *) A145606 = {1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 5142500, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125}; smoothNumbers[p_?PrimeQ, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j - 1]^Take[aa, j - 1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; smoothMax[n_] := A145606[[n]]; row[n_] := Module[{sn, sn1}, sn = smoothNumbers[Prime[n], smoothMax[n] + 1] ; sn1 = smoothNumbers[Prime[n - 1], smoothMax[n] + 1] ; Select[sn, MemberQ[sn, # + 1] && Not[MemberQ[sn1, #] && MemberQ[sn1, # + 1]] &]]; row[1] = {1}; Table[ro = row[n]; Print[n, " ", ro // Short]; ro, {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 17 2016 *)

A145604 Number of pairs of consecutive integers x, x+1 such that both are prime(n)-smooth but both are not prime(n-1)-smooth.

Original entry on oeis.org

1, 3, 6, 13, 17, 28, 40, 59, 74, 104, 137, 171, 216, 284, 349, 428, 524, 652, 790
Offset: 1

Views

Author

T. D. Noe, Oct 14 2008

Keywords

Comments

See A145605 for a triangle of x value. See A145606 for the largest x for each n.
An effective abc conjecture (c < rad(abc)^2) would imply that a(20)-a(33) is (943, 1201, 1401, 1738, 1955, 2240, 2793, 3340, 3860, 4582, 5284, 6050, 6883, 7984). - Lucas A. Brown, Oct 16 2022

Crossrefs

First differences of A002071.

Extensions

a(16) from Jean-François Alcover, Nov 11 2016
a(17)-a(18) from Lucas A. Brown, Sep 20 2020
a(19) from Lucas A. Brown, Oct 16 2022

A185389 Largest number k such that the greatest prime factor of k^2+1 is A002313(n), the n-th prime not congruent to 3 mod 4.

Original entry on oeis.org

1, 7, 239, 268, 307, 18543, 2943, 485298, 330182, 478707, 24208144, 22709274, 2189376182, 284862638, 599832943, 19696179, 314198789, 3558066693, 69971515635443, 18986886768, 18710140581, 104279454193
Offset: 1

Views

Author

Keywords

Comments

For any prime p, there are finitely many k such that k^2+1 has p as its largest prime factor.
Numbers k such that k^2+1 is p-smooth appear in arctan-relations for the computation of Pi (for example, Machin's identity Pi/4 = 4*arctan(1/5) - arctan(1/239)), see the fxtbook link. [Joerg Arndt, Jul 02 2012]

Crossrefs

Equivalents for other polynomials: A175607 (k^2 - 1), A145606 (k^2 + k).

A185396 Largest number x such that the greatest prime factor of x^2-2 is A038873(n), the n-th prime not congruent to 3 or 5 mod 8.

Original entry on oeis.org

2, 10, 108, 235, 1201, 390050, 314766, 4035, 364384, 50411, 25955045, 5254864, 236558593, 16958526, 20388056, 177544434, 492981885, 2275400230, 256347346, 384902923486, 324850200677887
Offset: 1

Views

Author

Keywords

Comments

For any prime p, there are finitely many x such that x^2-2 has p as its largest prime factor.

Crossrefs

Equivalents for other polynomials: A175607 (x^2 - 1), A145606 (x^2 + x), A185389 (x^2 + 1).

Extensions

a(21) added by Andrew Howroyd, Dec 22 2024

A193948 Integers k such that for all i > k the largest prime factor of i(i+1)(i+2)(i+3)(i+4)(i+5)(i+6) exceeds the largest prime factor of k(k+1)(k+2)(k+3)(k+4)(k+5)(k+6).

Original entry on oeis.org

4, 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 184, 527, 4896, 11658, 12874, 18904, 41919, 45998, 48504, 50688, 51982, 356207, 426851, 960750, 1961725, 4604094, 8418495, 10811745, 32963628, 45249999, 569800611, 7374557947, 121153257533
Offset: 1

Views

Author

Andrey V. Kulsha, Aug 10 2011

Keywords

Comments

Currently terms through a(16) = 12874 have been proved to be correct, while remaining terms are conjectural. Stormer's theorem (see link) provides an approach to proving their correctness. Such an approach should be easy for the first few terms. - Franklin T. Adams-Watters, Nov 07 2011

Crossrefs

A185397 Largest number x such that the greatest prime factor of x^2+2 is A033203(n), the n-th prime not congruent to 5 or 7 mod 8.

Original entry on oeis.org

22, 140, 707, 21362, 4991, 1306066, 137965, 2294636, 31768298, 1557652, 340064590, 38439662, 105080665, 273502688, 543164542, 9575480365630, 391890109484, 14629598023, 80849485336, 1241646894380
Offset: 1

Views

Author

Keywords

Comments

For any prime p, there are finitely many x such that x^2+2 has p as its largest prime factor.

Crossrefs

Equivalents for other polynomials: A175607 (x^2 - 1), A145606 (x^2 + x), A185389 (x^2 + 1), A185396 (x^2 - 2).

A193943 Integers n such that for all i > n the largest prime factor of i*(i+1) exceeds the largest prime factor of n*(n+1).

Original entry on oeis.org

1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 119089041053696, 2286831727304144, 9591468737351909375, 19316158377073923834000
Offset: 1

Views

Author

Andrey V. Kulsha, Aug 11 2011, according to Jim White's computations

Keywords

Crossrefs

Extensions

Corrected 23rd term in b-file (see Blog link), Andrey V. Kulsha, Dec 22 2014
a(20) and a(21) added (from b-file) by Jon E. Schoenfield, Apr 22 2018
Showing 1-9 of 9 results.