cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A085152 All prime factors of n and n+1 are <= 5. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 15, 24, 80
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Comments

Equivalently: Numbers n such that n(n+1) is 5-smooth.
The ABC conjecture would imply that if the prime factors of A, B, C are prescribed in advance, then there is only a finite number of solutions to the equation A + B = C with gcd(A,B,C)=1 (indeed it would bound C to be no more than "roughly" the product of those primes). So in particular there ought to be only finitely many pairs of adjacent integers whose prime factors are limited to {2, 3, 5} (D. Rusin).
This sequence is complete by a theorem of Stormer. See A002071. - T. D. Noe, Mar 03 2008
This is the 3rd row of the table A138180. It has 10 = A002071(3) = A145604(1)+A145604(2)+A145604(3) terms and ends with A002072(3) = 80. It is the union of all terms in rows 1 through 3 of the table A145605. It is a subsequence of A252494 and A085153. - M. F. Hasler, Jan 16 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 5 &] (* T. D. Noe, Mar 03 2008 *)
  • PARI
    for(n=1,99,vecmax(factor(n++)[,1])<6 && vecmax(factor(n--+(n<2))[,1])<6 && print1(n", ")) \\ This skips 2 if n+1 is not 5-smooth: twice as fast as the naive version. - M. F. Hasler, Jan 16 2015

Extensions

Edited by Dean Hickerson, Jun 30 2003

A085153 All prime factors of n and n+1 are <= 7. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Comments

The ABC conjecture would imply that if the prime factors of A, B, C are prescribed in advance, then there is only a finite number of solutions to the equation A + B = C with gcd(A,B,C)=1 (indeed it would bound C to be no more than "roughly" the product of those primes). So in particular there ought to be only finitely many pairs of adjacent integers whose prime factors are limited to {2, 3, 5, 7} (D. Rusin).
This sequence is complete by a theorem of Stormer. See A002071. - T. D. Noe, Mar 03 2008
This is the 4th row of the table A138180. It has 23=A002071(4)=A145604(1)+...+ A145604(4) terms and ends with A002072(4)=4374. It is the union of all terms in rows 1 through 4 of the table A145605. It is a subsequence of A252494 and contains A085152 as a subsequence. - M. F. Hasler, Jan 16 2015
Equivalently, this is the sequence of numbers for which A074399(n) <= 7, or A252489(n) <= 4.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 7 &] (* T. D. Noe, Mar 03 2008 *)
  • PARI
    for(n=1,9e6,vecmax(factor(n++)[,1])<8 && vecmax(factor(n--+(n<2))[,1])<8 && print1(n",")) \\ M. F. Hasler, Jan 16 2015

Extensions

Edited by Dean Hickerson, Jun 30 2003

A002071 Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime.

Original entry on oeis.org

1, 4, 10, 23, 40, 68, 108, 167, 241, 345, 482, 653, 869, 1153, 1502, 1930, 2454, 3106, 3896
Offset: 1

Views

Author

Keywords

Comments

Størmer's theorem proves that a(n) is finite. - Charles R Greathouse IV, Feb 19 2013
Also: Number of positive integers x such that x(x+1) is prime(n)-smooth. - M. F. Hasler, Jan 16 2015
Also: Row lengths of A138180; partial sums of A145604. - M. F. Hasler, Jan 16 2015
On an effective abc conjecture (c < rad(abc)^2), we have that a(20)-a(33) is (4839, 6040, 7441, 9179, 11134, 13374, 16167, 19507, 23367, 27949, 33233, 39283, 46166, 54150). - Lucas A. Brown, Oct 16 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A138180 (triangle of x values for each n).
Cf. A285283 (equivalent for x^2 + 1). - Tomohiro Yamada, Apr 22 2017

Programs

  • Mathematica
    (* This program needs x maxima taken from A002072. *) xMaxima = A002072;
    smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; a[n_] := Module[{sn, cnt}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; cnt = 0; Do[If[sn[[i]]+1 == sn[[i+1]], cnt++], {i, 1, Length[sn]-1}]; cnt]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Nov 10 2016 *)
    A002072 = {1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210};
    Table[Length[Select[Table[Max[FactorInteger[x], FactorInteger[x + 1]], {x, A002072[[n]]}], # <= Prime[n] &]], {n, 7}] (* Robert Price, Oct 29 2018 *)
  • PARI
    A002071(n)=[1,4,10,23,40,68,108,167,241,345,482,653,869,1153,1502][n] \\ "practical" solution. - M. F. Hasler, Jan 16 2015
    
  • PARI
    A002071(n,b=A002072,c=1,p=prime(n))={for(k=2,b(n),vecmax(factor(k++,p)[,1])<=p && vecmax(factor(k--+(k<2),p)[,1])<=p && c++); c} \\ b can be any upper bound for A002072, e.g., n->10^n should work, too. - M. F. Hasler, Jan 16 2015

Formula

a(n) <= (2^n-1)*(prime(n)+1)/2 is implicit in Lehmer 1964. - Charles R Greathouse IV, Feb 19 2013

Extensions

Better description and more terms from David Eppstein, Mar 23 2007
a(16) from Jean-François Alcover, Nov 10 2016
a(17)-a(18) from Lucas A. Brown, Aug 23 2020
a(19) from Lucas A. Brown, Oct 16 2022

A138180 Irregular triangle read by rows: row n consists of all numbers x such that x and x+1 have no prime factor larger than prime(n).

Original entry on oeis.org

1, 1, 2, 3, 8, 1, 2, 3, 4, 5, 8, 9, 15, 24, 80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539
Offset: 1

Views

Author

T. D. Noe, Mar 04 2008

Keywords

Comments

A number x is p-smooth if all prime factors of x are <= p. The length of row n is A002071(n). Row n begins with 1 and ends with A002072(n). Each term of row n-1 is in row n.
The n-th row is the union of the rows 1 to n of A145605. - M. F. Hasler, Jan 18 2015

Examples

			The table reads:
1,
1, 2, 3, 8,
1, 2, 3, 4, 5, 8, 9, 15, 24, 80,  (= A085152)
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, (= A085153)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800 (= A252494),
...
		

References

Crossrefs

Programs

  • Mathematica
    (* This program needs x maxima taken from A002072. *) xMaxima = A002072; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; row[n_] := Module[{sn}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; Reap[Do[If[sn[[i]]+1 == sn[[i+1]], Sow[sn[[i]]]], {i, 1, Length[sn]-1}]][[2, 1]]]; Table[Print[n]; row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 16 2015, updated Nov 10 2016 *)
  • PARI
    A138180_row=[]; A138180(n,k)={if(k, A138180(n)[k], #A138180_rowA138180_row=concat(A138180_row,vector(n)); if(#A138180_row[n], A138180_row[n], k=0; p=prime(n); A138180_row[n]=vector(A002071(n),i, until( vecmax(factor(k++)[, 1])<=p && vecmax(factor(k--+(k<2))[, 1])<=p,k++); k)))} \\ A138180(n) (w/o 2nd arg. k) returns the whole row. - M. F. Hasler, Jan 16 2015

A145604 Number of pairs of consecutive integers x, x+1 such that both are prime(n)-smooth but both are not prime(n-1)-smooth.

Original entry on oeis.org

1, 3, 6, 13, 17, 28, 40, 59, 74, 104, 137, 171, 216, 284, 349, 428, 524, 652, 790
Offset: 1

Views

Author

T. D. Noe, Oct 14 2008

Keywords

Comments

See A145605 for a triangle of x value. See A145606 for the largest x for each n.
An effective abc conjecture (c < rad(abc)^2) would imply that a(20)-a(33) is (943, 1201, 1401, 1738, 1955, 2240, 2793, 3340, 3860, 4582, 5284, 6050, 6883, 7984). - Lucas A. Brown, Oct 16 2022

Crossrefs

First differences of A002071.

Extensions

a(16) from Jean-François Alcover, Nov 11 2016
a(17)-a(18) from Lucas A. Brown, Sep 20 2020
a(19) from Lucas A. Brown, Oct 16 2022

A145606 Largest number x such that x and x+1 are prime(n)-smooth but not prime(n-1)-smooth.

Original entry on oeis.org

1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 5142500, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024, 20628591204480, 31887350832896, 12820120234375, 119089041053696, 2286831727304144, 9591468737351909375, 17451620110781856, 166055401586083680, 49956990469100000, 4108258965739505499, 19316158377073923834000, 386539843111191224
Offset: 1

Views

Author

T. D. Noe, Oct 14 2008

Keywords

Comments

Note that this sequence is not always increasing. For many n, a(n) is the same as A002072(n). See A145605 for a triangle of values.
An effective abc conjecture (c < rad(abc)^2) would imply that a(29)-a(33) is (90550606380841216610, 205142063213188103639, 53234795127882729824, 4114304445616636016031, 124225935845233319439173). - Lucas A. Brown, Sep 20 2020

Crossrefs

Extensions

Terms a(16) onward by Andrey V. Kulsha, Aug 10 2011, according to Jim White's computations

A252493 Numbers n such that n(n+1) is 13-smooth. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 32, 35, 39, 44, 48, 49, 54, 55, 63, 64, 65, 77, 80, 90, 98, 99, 104, 120, 125, 143, 168, 175, 195, 224, 242, 324, 350, 351, 363, 384, 440, 539, 624, 675, 728, 1000, 1715, 2079, 2400, 3024, 4095, 4224, 4374, 6655, 9800, 10647, 123200
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2015

Keywords

Comments

Equivalently: Numbers n such that all prime factors of n and n+1 are <= 13, i.e., both are in A080197.
This sequence is complete by a theorem of Stormer, cf. A002071.
This is the 6th row of the table A138180. It has 68=A002071(6)=A145604(1)+...+ A145604(6) terms and ends with A002072(6)=123200. It is the union of all terms in rows 1 through 6 of the table A145605.
Contains A085152, A085153, A252494 as subsequences.

Crossrefs

Programs

  • Maple
    N:= 130000: # to get all entries <= N
    f:= proc(n)
    uses padic;
    evalb(2^ordp(n,2)*3^ordp(n,3)*5^ordp(n,5)*7^ordp(n,7)*11^ordp(n,11)*13^ordp(n,13) = n)
    end proc:
    L:= map(f, [$1..N+1]):
    select(t -> L[t] and L[t+1], [$1..N]); # Robert Israel, Jan 16 2015
  • Mathematica
    Select[Range[123456], FactorInteger[ # (# + 1)][[ -1,1]] <= 13 &]
  • PARI
    for(n=1,123456, vecmax(factor(n++,13)[,1])<17 && vecmax(factor(n--+(n<2),13))<17 && print1(n",")) \\ Skips the next n if n+1 is not 13-smooth: Twice as fast as the naïve version. Instead of vecmax(.)<17 one could use is_A080197().

A252492 The largest prime factor of n*(n+1) equals 17. (Related to the abc conjecture.)

Original entry on oeis.org

16, 17, 33, 34, 50, 51, 84, 119, 135, 153, 169, 220, 255, 272, 288, 374, 441, 560, 594, 714, 832, 935, 1088, 1155, 1224, 1274, 1700, 2057, 2430, 2499, 2600, 4913, 5831, 12375, 14399, 28560, 31212, 37179, 194480, 336140
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2015

Keywords

Comments

Equivalently, the prime factors of n and n+1 are not larger than 17, but not all smaller than 17 (in which case n is in A252493).
This sequence is complete by a theorem of Stormer, cf. A002071 and sequences A085152, A085153, A252494, A252493.
This is row 7 of A145605. It has A145604(7)=40 terms and ends with A002072(7)=336140.

Crossrefs

Programs

  • Mathematica
    Select[Range[345678], FactorInteger[ # (# + 1)][[ -1,1]] == 17 &]
  • PARI
    for(n=1,9e6,vecmax(factor(n++)[,1])<18 && vecmax(factor(n*n--)[,1])==17 && print1(n",")) \\ Skips 2 if n+1 is not 17-smooth: Twice as fast as the naïve version.

A252494 Numbers n such that all prime factors of n and n+1 are <= 11. (Related to the abc conjecture.)

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2015

Keywords

Comments

This sequence is complete by a theorem of Stormer, cf. A002071.
This is the 5th row of the table A138180. It has 40=A002071(5)=A145604(1)+...+ A145604(5) terms and ends with A002072(5)=9800. It is the union of all terms in rows 1 through 5 of the table A145605.
This is a subsequence of A252493, and contains A085152 and A085153 as subsequences.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], FactorInteger[ # (# + 1)][[ -1,1]] <= 11 &]
  • PARI
    for(n=1,9e6,vecmax(factor(n++)[,1])<12 && vecmax(factor(n--+(n<2))[,1])<12 && print1(n",")) \\ Skips 2 if n+1 is not 11-smooth: Twice as fast as the naive version.

A193945 Integers n such that for all i > n the largest prime factor of i(i+1)(i+2)(i+3) exceeds the largest prime factor of n(n+1)(n+2)(n+3).

Original entry on oeis.org

1, 3, 7, 9, 63, 168, 322, 1518, 1680, 10878, 17575, 70224, 97524, 224846, 612360, 15473807, 61011223, 108384553, 137308589, 999208250, 1497820158, 22377473780, 238092971076, 316419292600, 23931257472314
Offset: 1

Views

Author

Andrey V. Kulsha, Aug 10 2011

Keywords

Comments

Heuristics show that these terms are valid, but a strict proof is yet to be done.
a(1)-a(11) verified via Størmer's theorem. - Charles R Greathouse IV, Feb 19 2013

Crossrefs

Showing 1-10 of 13 results. Next