A086485 Duplicate of A068310.
3, 2, 15, 6, 35, 3, 7, 5, 11, 30, 143, 42, 195, 14, 255, 2, 323, 10, 399, 110, 483, 33, 23
Offset: 2
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
a005563 n = n * (n + 2) a005563_list = zipWith (*) [0..] [2..] -- Reinhard Zumkeller, Dec 16 2012
[n*(n+2): n in [0..60]]; // G. C. Greubel, Mar 29 2024
Table[n^2 - 1, {n, 42}] (* Zerinvary Lajos, Mar 21 2007 *) ListCorrelate[{1, 2}, Range[-1, 50], {1, -1}, 0, Plus, Times] (* Harvey P. Dale, Aug 29 2015 *) Range[20]^2 - 1 (* Eric W. Weisstein, Aug 16 2017 *) Table[n (n + 2), {n, 20}] (* Eric W. Weisstein, Nov 21 2024 *) CoefficientList[Series[(-3 + x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 21 2024 *) LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 20] (* Eric W. Weisstein, Nov 21 2024 *)
makelist(n*(n+2), n, 0, 56); /* Martin Ettl, Oct 15 2012 */
a(n)=n*(n+2) \\ Charles R Greathouse IV, Dec 22 2011
concat(0, Vec(x*(3-x)/(1-x)^3 + O(x^90))) \\ Altug Alkan, Oct 22 2015
[n*(n+2) for n in range(61)] # G. C. Greubel, Mar 29 2024
a008833 n = head $ filter ((== 0) . (mod n)) $ reverse $ takeWhile (<= n) $ tail a000290_list -- Reinhard Zumkeller, Nov 13 2011
A008833 := proc(n) expand(numtheory:-nthpow(n,2)) ; end proc: seq(A008833(n), n=1..100) ;
a[n_] := First[ Select[ Reverse[ Divisors[n]], IntegerQ[Sqrt[#]]&, 1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 12 2011 *) f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jul 07 2020 *)
A008833(n)=n/core(n) \\ Michael B. Porter, Oct 17 2009
from sympy.ntheory.factor_ import core def A008833(n): return n//core(n) # Chai Wah Wu, Dec 30 2021
a(4)=3, based on 3*4^2 + 1 = 7^2.
a067872 n = (until ((== 1) . a010052 . (+ 1)) (+ nn) nn) `div` nn where nn = n ^ 2 -- Reinhard Zumkeller, Jun 28 2013
a[n_] := For[m=1, True, m++, If[IntegerQ[Sqrt[m*n^2+1]], Return[m]]]; Table[a[n], {n, 100}] lm[n_]:=Module[{m=1},While[!IntegerQ[Sqrt[m n^2+1]],m++];m]; Array[lm,60] (* Harvey P. Dale, Feb 24 2013 *)
def A067872(n): y, x, n2 = n*(n+2), 2*n+3, n**2 m, r = divmod(y,n2) while r: y += x x += 2 m, r = divmod(y,n2) return m # Chai Wah Wu, Jan 25 2016
a(9) = (9^3-1)/8 = (2^3 * 7 * 13)/(2^3) = 728/8 = 91. a(10) = (10^3-1)/27 = (3^3 * 37)/(3^3) = 999/27 = 37. a(18) = (18^3-1)/343 = (7^3 * 17)/(7^3) = 5831/343 = 17.
a:= n -> mul(f[1]^(f[2] mod 3), f = ifactors(n^3-1)[2]): seq(a(n),n=2..100); # Robert Israel, Sep 24 2014
a(3) = 5 because (3^4 - 1)/16 = 80/16 = (2^4 * 5)/(2^4) = 5. a(5) = 39 because (5^4 - 1)/16 = 624/16 = (2^4 * 3 * 13)/(2^4) = 39. a(7) = 150 because (7^4 - 1)/16 = 2400/16 = (2^5 * 3 * 5^2)/(2^4) = 150. a(9) = 410 because (9^4 - 1)/16 = 6560/16 = (2^5 * 5 * 41)/(2^4) = 410. a(63) = 61535 because (63^4 - 1)/256 = 15752960/256 = (2^8 * 5 * 31 * 397)/(2^8) = 61535.
a(2)=17. The squarefree part of 17^2 - 1 = 288 is D = 2. But the smallest possible solution to x^2 - 2*y^2 = 1 is not x = 17 but x = 3 (with y = 2). 15 is not a term: the squarefree part of 15^2 - 1 = 224 is D = 14 and x^2 - 14*y^2 = 1 has indeed the minimal solution x = 15 (and y = 4).
squarefreepart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n]); a = {}; NMAX = 3400; dict // Clear; For[n = 2, n <= NMAX, n++, s = squarefreepart[n^2 - 1]; If[ ! IntegerQ[dict[s]], dict[s] = 1, AppendTo[a, n]]]; a
f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Times @@ (f @@@ FactorInteger[n^2 - 1]); Array[a, 100, 2] (* Amiram Eldar, Jan 04 2023 *)
a(n) = (n^2-1)/core(n^2-1); \\ Michel Marcus, Feb 19 2023
from sympy.ntheory.factor_ import core def a(n): return (n**2-1)//core(n**2-1)
Comments
= S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012