cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068310 n^2 - 1 divided by its largest square divisor.

Original entry on oeis.org

3, 2, 15, 6, 35, 3, 7, 5, 11, 30, 143, 42, 195, 14, 255, 2, 323, 10, 399, 110, 483, 33, 23, 39, 3, 182, 87, 210, 899, 15, 1023, 17, 1155, 34, 1295, 38, 1443, 95, 1599, 105, 1763, 462, 215, 506, 235, 138, 47, 6, 51, 26, 2703, 78, 2915, 21, 3135, 203, 3363, 870, 3599
Offset: 2

Views

Author

Lekraj Beedassy, Feb 25 2002

Keywords

Comments

In other words, squarefree part of n^2-1.
Least m for which x^2 - m*y^2 = 1 has a solution with x = n.

Examples

			a(6) = 35, as 6^2 - 1 = 35 itself is squarefree.
7^2-1 = 48 = A005563(6), whose largest square divisor is A008833(48) = 16, so a(7) = 48/16 = 3.
		

Crossrefs

Programs

  • Haskell
    a068310 n = f 1 $ a027746_row (n^2 - 1) where
       f y [] = y
       f y [p] = y*p
       f y (p:ps'@(p':ps)) | p == p' = f y ps
                           | otherwise = f (y*p) ps'
    -- Reinhard Zumkeller, Nov 26 2011
  • Mathematica
    a[n_] := Times@@(#[[1]] ^ Mod[ #[[2]], 2]&/@FactorInteger[n^2-1])
    Table[(n^2-1)/Max[Select[Divisors[n^2-1],IntegerQ[Sqrt[#]]&]],{n,2,60}] (* Harvey P. Dale, Dec 08 2019 *)
  • PARI
    a(n) = core(n*n - 1); \\ David Wasserman, Mar 07 2005
    

Formula

a(n) = A007913(n^2-1).
a(n) = A005563(n-1) / A008833(n^2 - 1). - Reinhard Zumkeller, Nov 26 2011; corrected by Georg Fischer, Dec 10 2022

Extensions

Edited by Dean Hickerson, Mar 19 2002
Entry revised by N. J. A. Sloane, Apr 27 2007

A128972 n^3 - 1 divided by its largest cube divisor.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 91, 37, 1330, 1727, 2196, 2743, 3374, 4095, 614, 17, 254, 7999, 9260, 10647, 12166, 13823, 1953, 17575, 19682, 813, 24388, 26999, 29790, 32767, 4492, 39303, 42874, 46655, 1876, 54871, 59318, 63999, 8615, 74087, 79506
Offset: 2

Views

Author

Jonathan Vos Post, Apr 28 2007

Keywords

Comments

In other words, cubefree part of n^3-1, or cubefree kernel of n^3-1. Cube analog of A068310.

Examples

			a(9) = (9^3-1)/8 = (2^3 * 7 * 13)/(2^3) = 728/8 = 91.
a(10) = (10^3-1)/27 = (3^3 * 37)/(3^3) = 999/27 = 37.
a(18) = (18^3-1)/343 = (7^3 * 17)/(7^3) = 5831/343 = 17.
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(f[1]^(f[2] mod 3), f = ifactors(n^3-1)[2]):
    seq(a(n),n=2..100); # Robert Israel, Sep 24 2014

Formula

a(n) = A062378(A068601(n)) = A062378(n^3-1).

Extensions

More terms from Carl R. White, Nov 09 2010

A266236 Least m > 0 such that m*n^3 + 1 is a cube.

Original entry on oeis.org

1, 7, 91, 37, 4291, 16003, 1801, 17, 263683, 19927, 1003003, 1775557, 111169, 506115, 17145, 423001, 16789507, 24152311, 1261657, 3266062, 64024003, 5080, 113411851, 148072393, 7082497, 244187503, 1922636, 14355469, 3132736, 594896491, 27009001, 8341522, 1073840131
Offset: 0

Views

Author

Alex Ratushnyak, Dec 25 2015

Keywords

Comments

Least m>0 for which x^3 - m*y^3 = 1 has a solution with y = n.

Examples

			17*7^3+1 = 18^3, and 17 is the smallest positive m such that m*7^3+1 is a cube, so a(7)=17.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{x = 2, n3 = n^3}, While[ Mod[x^3 - 1, n3] != 0, x++]; (x^3 - 1)/n3]; f[0] = 1; Array[f, 34, 0] (* Robert G. Wilson v, Mar 24 2016 *)
  • PARI
    a(n) = {my(m = 1, cn = n^3); while (!ispower(m*cn + 1, 3), m++); m;} \\ Michel Marcus, Feb 09 2016

Formula

a(n) = A076947(n^3). - Robert Israel, Dec 25 2015

A267077 Least m>0 for which m*n^2 + 1 is a square and m*triangular(n) + 1 is a triangular number (A000217). Or -1 if no such m exists.

Original entry on oeis.org

1, 35, 30, 18135, 189, 27, 321300, 23760, 1188585957, 1656083, 26, 244894427400, 82093908624206325, 1858717755529547, 86478, 21491811639746039592, 26135932603458945934958445, 353382195058506640426335, 26780050, 7859354769338288038121982384, 274554988002
Offset: 0

Views

Author

Alex Ratushnyak, Jan 10 2016

Keywords

Examples

			26*10^2+1 = 2601 is a square, and 26*10*11/2+1 = 1431 = triangular(53), and 26 is the smallest such multiplier, therefore a(10) = 26.
		

Crossrefs

Programs

  • Python
    from math import sqrt
    def A267077(n):
        if n == 0:
            return 1
        u,v,t,w = max(8,2*n),max(4,n)**2-9,4*n*(n+1),n**2
        while True:
            m,r = divmod(v,t)
            if not r and int(sqrt(m*w+1))**2 == m*w+1:
                return m
            v += u+1
            u += 2 # Chai Wah Wu, Jan 15 2016
    
  • Python
    #!/usr/bin/python3
    # This sequence is easy if you use a Pell-equation solver such as labmath.py
    # Solve the A267077 Pell equation:
    # nx^2 - (4n+4)y^2 = 5n-4; but also y^2 == 1 mod n^2
    # Let u = nx, then # u^2 - n*(4n+4)y^2 = n*(5n-4)
    #   and (y > n) and (u == 0 mod n) and (y^2 == 1 mod n^2)
    # (y > n makes m > 0)
    # Report m = (y^2 - 1) / n^2
    import labmath
    print(0, 1)
    print(1, 35) # When n<2, the Pell equation is elliptical.
    for nn in range(2,1001):
        nsq = nn * nn
        ps = labmath.pell(nn*(4*nn+4), nn*(5*nn-4))
        uu,yy = next(ps[0])
        while (yy <= nn) or ((uu % nn) != 0) or ((yy*yy) % nsq != 1):
            uu,yy = next(ps[0])
        print(nn, (yy*yy - 1) // nsq)
    # From Don Reble, Apr 15 2022, added by N. J. A. Sloane, Apr 15 2022.

Extensions

a(12)-a(15) from Chai Wah Wu, Jan 16 2016
a(16) and beyond from Don Reble, Apr 15 2022

A128251 n^4 - 1 divided by its largest fourth power divisor.

Original entry on oeis.org

15, 5, 255, 39, 1295, 150, 4095, 410, 9999, 915, 20735, 1785, 38415, 3164, 65535, 5220, 104975, 8145, 159999, 12155, 234255, 17490, 331775, 24414, 456975, 33215, 614655, 44205, 809999, 57720, 1048575, 74120, 1336335, 93789, 1679615, 117135
Offset: 2

Views

Author

Jonathan Vos Post, May 03 2007

Keywords

Comments

In other words, biquadratefree part of n^4-1, or biquadratefree kernel of n^4-1. Fourth power analog of what A128972 is to cubes and A068310 is to squares. A046100 Biquadratefree numbers. A008835 Largest 4th power dividing n.

Examples

			a(3) = 5 because (3^4 - 1)/16 = 80/16 = (2^4 * 5)/(2^4) = 5.
a(5) = 39 because (5^4 - 1)/16 = 624/16 = (2^4 * 3 * 13)/(2^4) = 39.
a(7) = 150 because (7^4 - 1)/16 = 2400/16 = (2^5 * 3 * 5^2)/(2^4) = 150.
a(9) = 410 because (9^4 - 1)/16 = 6560/16 = (2^5 * 5 * 41)/(2^4) = 410.
a(63) = 61535 because (63^4 - 1)/256 = 15752960/256 = (2^8 * 5 * 31 * 397)/(2^8) = 61535.
		

Crossrefs

Formula

a(n) = (n^4 - 1)/A008835(n^4 - 1) = (A000583(n)-1)/A008835((A000583(n)-1)).
Showing 1-5 of 5 results.