cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A242488 Triangle read by rows in which row n lists numbers k such that the greatest prime factor of k^2 - 2 is A038873(n), the n-th prime not congruent to 3 or 5 mod 8.

Original entry on oeis.org

2, 3, 4, 10, 6, 11, 45, 108, 5, 18, 28, 74, 156, 235, 8, 23, 39, 116, 1201, 17, 24, 58, 147, 304, 550, 2272, 390050, 7, 40, 54, 87, 101, 181, 557, 1558, 43764, 314766, 12, 59, 130, 225, 414, 1077, 1124, 2686, 3420, 4035, 32, 41, 178, 333, 698, 844, 1638, 4567, 15362, 364384
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 16 2014

Keywords

Comments

From Andrew Howroyd, Dec 22 2024: (Start)
For any prime p, there are finitely many x such that x^2 - 2 has p as its largest prime factor.
The Filip Najman data file gives all 537 numbers x such that x^2 - 2 has no prime factor greater than 199. This includes a value for x = 1 which is not included here. (End)

Examples

			Triangle of numbers k such that p is the greatest prime factor of k^2 - 2:
p\k  |  1 |  2 |  3  |  4  |  5   |  6   |  7   |  >= 8
------------------------------------------------------------------------
   2 |  2 |    |     |     |      |      |      |
   7 |  3 |  4 |  10 |     |      |      |      |
  17 |  6 | 11 |  45 | 108 |      |      |      |
  23 |  5 | 18 |  28 |  74 |  156 |  235 |      |
  31 |  8 | 23 |  39 | 116 | 1201 |      |      |
  41 | 17 | 24 |  58 | 147 |  304 |  550 | 2272 | 390050;
  47 |  7 | 40 |  54 |  87 |  101 |  181 |  557 | 1558, 43764, 314766;
  71 | 12 | 59 | 130 | 225 |  414 | 1077 | 1124 | 2686, 3420, 4035;
  73 | 32 | 41 | 178 | 333 |  698 |  844 | 1638 | 4567, 15362, 364384;
  ...
6 is a term of row 3 because (6^2 - 2)/17 = 2 and 2 < 17;
11 is a term of row 3 because (11^2 - 2)/17 = 7 and 7 < 17;
45 is a term of row 3 because (45^2 - 2)/17^2 = 7 and 7 < 17;
108 is a term of row 3 because (108^2 - 2)/17 = 686 = 2*7^3 and 7 < 17.
		

Crossrefs

Cf. A038873, A164314, A059770 (first terms for n>1), A185396 (last terms), A379348 (row lengths).
Cf. A223701.

Extensions

Converted to triangle by Andrew Howroyd, Dec 22 2024

A181471 a(n) = number of numbers of the form k^2-1 having n-th prime as largest prime divisor.

Original entry on oeis.org

1, 4, 8, 16, 20, 34, 47, 72, 95, 126, 168, 208, 262, 343, 433, 507, 634, 799, 976, 1146, 1439, 1698, 2082, 2371, 2734
Offset: 1

Views

Author

Artur Jasinski, Oct 21-22 2010

Keywords

Comments

Theorem: zero does not occur in this sequence. Proof: (p-1)^2-1=(p-2)p. This means that p is greatest prime divisor of (p-1)^2-1 for every p.
An effective abc conjecture (c < rad(abc)^2) would imply that a(24)-a(33) are (2371, 2734, 3360, 4022, 4637, 5575, 6424, 7268, 8351, 9661). - Lucas A. Brown, Oct 01 2022

Crossrefs

Row lengths of A223701.

Extensions

Wrong terms a(24)-a(25) removed by Lucas A. Brown, Oct 01 2022
a(24)-a(25) from David A. Corneth, Oct 01 2022

A223702 Irregular triangle of numbers k such that A002313(n), the n-th prime not congruent to 3 mod 4 is the largest prime factor of k^2 + 1.

Original entry on oeis.org

1, 2, 3, 7, 5, 8, 18, 57, 239, 4, 13, 21, 38, 47, 268, 12, 17, 41, 70, 99, 157, 307, 6, 31, 43, 68, 117, 191, 302, 327, 882, 18543, 9, 32, 73, 132, 278, 378, 829, 993, 2943, 23, 30, 83, 182, 242, 401, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that primes of the form 4x+3 are not divisors.

Examples

			Irregular triangle:
   p | {k}
-----+---------------------------------
   2 | {1},
   5 | {2, 3, 7},
  13 | {5, 8, 18, 57, 239},
  17 | {4, 13, 21, 38, 47, 268},
  29 | {12, 17, 41, 70, 99, 157, 307},
  37 | {6, 31, 43, 68, 117, 191, 302, 327, 882, 18543},
  41 | {9, 32, 73, 132, 278, 378, 829, 993, 2943}
  ...
		

Crossrefs

Cf. A002313, A014442, A177979 (first terms), A185389 (last terms), A223705, A285283, A379346 (row lengths), A379347 (row sums).
Cf. A223701, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 + 1][[-1,1]], {n, 10^5}]; Table[Flatten[Position[t, Prime[n]]], {n, 13}]

Extensions

Definition amended by Andrew Howroyd, Dec 22 2024

A181465 Numbers k such that 71 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

70, 141, 143, 214, 283, 285, 356, 425, 496, 569, 638, 709, 780, 782, 851, 853, 924, 993, 1135, 1208, 1277, 1279, 1561, 1563, 1703, 1847, 2058, 2129, 2131, 2344, 2413, 2626, 2699, 2839, 2841, 3054, 3265, 3267, 3336, 3338, 3409, 3478, 3480, 3551, 3620, 3691
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 71.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(20) = 238178082107393; primepi(71) = 20.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 71 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 19 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 14000000, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 71, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==71&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 67, n/=p^valuation(n, p)); n>1 && 71^valuation(n, 71)==n \\ Charles R Greathouse IV, Jul 01 2013

A181466 Numbers k such that 73 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

72, 74, 145, 147, 218, 220, 291, 293, 364, 439, 512, 729, 731, 804, 875, 1021, 1023, 1167, 1169, 1240, 1313, 1315, 1459, 1461, 1607, 1678, 1680, 1751, 1826, 1899, 2045, 2116, 2262, 2481, 2483, 2554, 2702, 2773, 2848, 3067, 3284, 3359, 3576, 3649, 3722
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 73.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(21) = 4573663454608289; primepi(73) = 21.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 73 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 73 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 73, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==73&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 71, n/=p^valuation(n, p)); n>1 && 73^valuation(n, 73)==n \\ Charles R Greathouse IV, Jul 01 2013

A181467 Numbers k such that 79 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

78, 80, 157, 159, 236, 317, 473, 475, 552, 554, 631, 712, 791, 868, 870, 947, 949, 1026, 1028, 1105, 1184, 1421, 1737, 1739, 1816, 1897, 2053, 2134, 2211, 2213, 2369, 2450, 2529, 2685, 2687, 2843, 2924, 3001, 3161, 3477, 3554, 3870, 3949, 3951, 4186, 4188
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 79.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(22) = 19182937474703818751; primepi(79) = 22.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 79 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 79 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 79, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==79&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 73, n/=p^valuation(n, p)); n>1 && 79^valuation(n, 79)==n \\ Charles R Greathouse IV, Jul 01 2013

A181468 Numbers k such that 83 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

82, 84, 165, 167, 248, 331, 414, 497, 499, 582, 665, 829, 831, 914, 995, 1080, 1161, 1246, 1327, 1329, 1495, 1576, 1825, 1910, 2076, 2157, 2159, 2323, 2406, 2408, 2738, 2821, 2906, 2989, 3070, 3238, 3319, 3485, 3568, 3651, 3653, 3817, 4149, 4234, 4481
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 83.
Sequence is finite, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(23) = 34903240221563713 = a(2082); pi(83) = 23.

Crossrefs

Programs

  • Magma
    [ n: n in [2..300000] | m eq 83 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Magma
    p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 83 where D is PrimeDivisors(n^2-1)) ]; // Klaus Brockhaus, Feb 21 2011
    
  • Mathematica
    jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 83, AppendTo[rr, n]]]; n++ ]; rr (* Artur Jasinski *)
    Select[Range[300000], FactorInteger[#^2-1][[-1, 1]]==83&]
  • PARI
    is(n)=n=n^2-1; forprime(p=2, 79, n/=p^valuation(n, p)); n>1 && 83^valuation(n, 83)==n \\ Charles R Greathouse IV, Jul 01 2013

A223707 Conjectured least number k such that prime(n) is the largest divisor of k^3 + 1, or 0 if there is no such k.

Original entry on oeis.org

1, 2, 0, 3, 0, 4, 0, 8, 0, 0, 6, 11, 122, 7, 0, 582, 0, 14, 30, 212, 9, 24, 82, 88, 36, 1817, 47, 0, 46, 677, 20, 654, 136, 43, 2383, 33, 13, 59, 166, 1037, 210682, 49, 381, 85, 23245, 93, 15, 40, 18613, 95, 5591, 1433, 16, 0, 1798, 788, 26361, 29, 117, 842
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

We allowed k to vary up to 10^7.

Crossrefs

Cf. A223701-A223706 (related sequences).

Programs

  • Mathematica
    nn = 60; t = Table[0, {nn}]; ps = Prime[Range[nn]]; Do[num = n^3 + 1; j = 0; lastP = 0; While[num > 0 && j < nn, j++; p = ps[[j]]; While[Mod[num, p] == 0, lastP = j; num = num/p]];If[num == 1 && t[[lastP]] == 0, t[[lastP]] = n; Print[{lastP, n}]], {n, 10^7}]; t

A379350 Triangle read by rows in which row n lists numbers k such that the greatest prime factor of k^2 + 2 is A033203(n), the n-th prime not congruent to 5 or 7 mod 8.

Original entry on oeis.org

0, 1, 2, 4, 5, 22, 3, 8, 14, 19, 140, 7, 10, 24, 41, 58, 265, 707, 6, 13, 25, 32, 44, 63, 146, 184, 602, 3407, 21362, 11, 30, 52, 71, 112, 194, 298, 481, 503, 2695, 3433, 4991, 16, 27, 59, 70, 102, 113, 317, 500, 586, 1048, 2951, 3424, 4972, 8240, 12658, 83834, 686210, 1306066
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2024

Keywords

Comments

For any prime p, there are finitely many x such that x^2 + 2 has p as its greatest prime factor.

Examples

			Irregular triangle begins:
   p | {k}
-----+------------------
   2 | {0}
   3 | {1, 2, 4, 5, 22}
  11 | {3, 8, 14, 19, 140}
  17 | {7, 10, 24, 41, 58, 265, 707}
  19 | {6, 13, 25, 32, 44, 63, 146, 184, 602, 3407, 21362}
  41 | {11, 30, 52, 71, 112, 194, 298, 481, 503, 2695, 3433, 4991}
  ...
		

Crossrefs

Cf. A033203, A379351, A379352 (first terms), A185397 (last terms), A379349 (row lengths).

A181448 Numbers k such that 5 is the largest prime factor of k^2 - 1.

Original entry on oeis.org

4, 9, 11, 19, 26, 31, 49, 161
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2010

Keywords

Comments

Numbers k such that A076605(k) = 3.
Sequence is finite and complete, for proof see A175607.
Search for terms can be restricted to the range from 2 to A175607(3) = 161; primepi(5) = 3.

Crossrefs

Programs

  • Magma
    [ n: n in [2..200] | m eq 5 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 17 2011
    
  • Mathematica
    Select[Range[200], FactorInteger[#^2-1][[-1, 1]]==5&]
  • PARI
    is(n)=n=n^2-1; n>>=valuation(n,2); n/=3^valuation(n,3); n>1 && 5^valuation(n, 5)==n \\ Charles R Greathouse IV, Jul 01 2013
Showing 1-10 of 19 results. Next