cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175620 Triangle read by rows: T(n,k) = 2^(prime(n) - k - 1) mod n, 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 2, 1, 3, 4, 2, 2, 4, 2, 4, 2, 4, 1, 4, 2, 1, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 5, 7, 8, 4, 2, 8, 4, 2, 6, 8, 4, 2, 6, 8, 4, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 2, 1, 7, 10, 5, 9, 11, 12, 6, 3, 8
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 12 2010

Keywords

Examples

			Triangle begins:
  0;
  0, 1;
  2, 1, 2;
  0, 0, 0, 0;
  2, 1, 3, 4, 2;
  2, 4, 2, 4, 2, 4;
		

Crossrefs

Programs

  • Magma
    [Modexp(2,NthPrime(n)-k-1,n): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 12 2024
    
  • Maple
    A175620 := proc(n,k) modp(2^(ithprime(n)-k-1) ,n) ; end proc: # R. J. Mathar, Dec 14 2010
  • Mathematica
    Flatten[Table[PowerMod[2,Prime[n]-k-1,n],{n,20},{k,n}]] (* Harvey P. Dale, Dec 10 2012 *)
  • SageMath
    flatten([[pow(2,nth_prime(n)-k-1,n) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 12 2024