A173655 Triangle read by rows: T(n,k) = prime(n) mod prime(k), 0 < k <= n.
0, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 1, 4, 0, 1, 1, 3, 6, 2, 0, 1, 2, 2, 3, 6, 4, 0, 1, 1, 4, 5, 8, 6, 2, 0, 1, 2, 3, 2, 1, 10, 6, 4, 0, 1, 2, 4, 1, 7, 3, 12, 10, 6, 0, 1, 1, 1, 3, 9, 5, 14, 12, 8, 2, 0, 1, 1, 2, 2, 4, 11, 3, 18, 14, 8, 6, 0, 1, 2, 1, 6, 8, 2, 7, 3, 18, 12, 10, 4, 0
Offset: 1
Examples
Triangle begins as: 0; 1, 0; 1, 2, 0; 1, 1, 2, 0; 1, 2, 1, 4, 0; 1, 1, 3, 6, 2, 0; 1, 2, 2, 3, 6, 4, 0; 1, 1, 4, 5, 8, 6, 2, 0; 1, 2, 3, 2, 1, 10, 6, 4, 0; 1, 2, 4, 1, 7, 3, 12, 10, 6, 0;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A173655:= func< n,k | NthPrime(n) mod NthPrime(k) >; [A173655(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 10 2024
-
Maple
A173655 := proc(n,k) ithprime(n) mod ithprime(k) ;end proc: seq(seq(A173655(n,k),k=1..n),n=1..20) ; # R. J. Mathar, Nov 24 2010
-
Mathematica
Flatten[Table[Mod[Prime[n], Prime[Range[n]]], {n, 15}]]
-
PARI
forprime(p=2,40,forprime(q=2,p,print1(p%q", "))) \\ Charles R Greathouse IV, Dec 21 2011
-
SageMath
def A173655(n,k): return nth_prime(n)%nth_prime(k) flatten([[A173655(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Apr 10 2024
Comments