A175656 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1-3*x^2)/(1-3*x+4*x^3).
1, 3, 6, 14, 30, 66, 142, 306, 654, 1394, 2958, 6258, 13198, 27762, 58254, 121970, 254862, 531570, 1106830, 2301042, 4776846, 9903218, 20505486, 42409074, 87614350, 180821106, 372827022, 768023666, 1580786574, 3251051634
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Crossrefs
Cf. A175655 (central square).
Programs
-
Magma
[((3*n+22)*2^n-4*(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Aug 04 2011
-
Maple
with(LinearAlgebra): nmax:=29; m:=5; A[5]:= [0,0,0,0,0,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
-
Mathematica
CoefficientList[Series[(1 - 3 x^2)/(1 - 3 x + 4 x^3), {x, 0, 29}], x] (* Michael De Vlieger, Nov 02 2018 *) LinearRecurrence[{3,0,-4},{1,3,6},30] (* Harvey P. Dale, Aug 12 2020 *)
-
PARI
vector(40, n, n--; ((3*n+22)*2^n - 4*(-1)^n)/18) \\ G. C. Greubel, Nov 03 2018
Formula
G.f.: (1-3*x^2)/(1 - 3*x + 4*x^3).
a(n) = 3*a(n-1) - 4*a(n-3) with a(0)=1, a(1)=3 and a(2)=6.
a(n) = ((3*n+22)*2^n - 4*(-1)^n)/18.
Comments