A175705 Convolution square of A001157 (the sum of squared divisors).
1, 10, 45, 142, 362, 780, 1561, 2762, 4808, 7570, 12034, 17482, 26072, 35884, 50909, 67012, 92111, 116950, 155720, 193564, 250914, 304244, 389286, 461654, 578952, 680944, 839304, 970094, 1188924, 1354164, 1637145, 1858344, 2215866, 2485068
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): T:=array(1..200):for p from 1 to 200 do: liste:=divisors(p) :s2:=sum(liste[i]^2,i=1..nops(liste)):T[p] :=s2 :od : for n from 1 to 100 do: printf(`%d, `, sum (T[k]*T[n+1-k],k=1..n)):od:
-
Mathematica
a[n_] := Sum[DivisorSigma[2, k] * DivisorSigma[2, n + 1 - k], {k, 1, n}]; Array[a, 34] (* Amiram Eldar, Jul 31 2019 *)
Formula
G.f.: (1/x)*(Sum_{k>=1} k^2*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Jan 01 2017
Conjecture: Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^6 / 180. - Vaclav Kotesovec, Aug 20 2025
Extensions
Definition slightly rephrased by R. J. Mathar, Aug 19 2010