cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175705 Convolution square of A001157 (the sum of squared divisors).

Original entry on oeis.org

1, 10, 45, 142, 362, 780, 1561, 2762, 4808, 7570, 12034, 17482, 26072, 35884, 50909, 67012, 92111, 116950, 155720, 193564, 250914, 304244, 389286, 461654, 578952, 680944, 839304, 970094, 1188924, 1354164, 1637145, 1858344, 2215866, 2485068
Offset: 1

Views

Author

Michel Lagneau, Aug 10 2010

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): T:=array(1..200):for p from 1 to 200 do: liste:=divisors(p) :s2:=sum(liste[i]^2,i=1..nops(liste)):T[p] :=s2 :od : for n from 1 to 100 do: printf(`%d, `, sum (T[k]*T[n+1-k],k=1..n)):od:
  • Mathematica
    a[n_] := Sum[DivisorSigma[2, k] * DivisorSigma[2, n + 1 - k], {k, 1, n}]; Array[a, 34] (* Amiram Eldar, Jul 31 2019 *)

Formula

a(n) = Sum_{k=1..n} A001157(k)* A001157(n+1-k).
G.f.: (1/x)*(Sum_{k>=1} k^2*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Jan 01 2017
Conjecture: Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^6 / 180. - Vaclav Kotesovec, Aug 20 2025

Extensions

Definition slightly rephrased by R. J. Mathar, Aug 19 2010