A175739 Triangle T(n,m) with the coefficient [x^m] of the polynomial x^(2*n) - x^(2*n - 1) - x^n - x + 1 in row n, column m, 1 <= m <= 2*n. T(0,0) = 1.
1, 1, -3, 1, 1, -1, -1, -1, 1, 1, -1, 0, -1, 0, -1, 1, 1, -1, 0, 0, -1, 0, 0, -1, 1, 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
The polynomial coefficients are 1; 1, -3, 1; 1, -1, -1, -1, 1; 1, -1, 0, -1, 0, -1, 1; 1, -1, 0, 0, -1, 0, 0, -1, 1; 1, -1, 0, 0, 0, -1, 0, 0, 0, -1, 1; 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1; 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1; 1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 1; 1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1; 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; ... The corresponding Mahler measures are ----------------------------------------------------- n | M(p_n) || n | M(p_n) ----------------------------------------------------- 1 | 1.7220838057390422450 || 6 | 1.2612309611 2 | 1.5061356795538388 || 7 | 1.2363179318 3 | 1.40126836793 || 8 | 1.21639166113826509 4 | 1.337313210201 || 9 | 1.200026523 5 | 1.293485953125 || 10 | 1.286735 ...
Links
- Michael Mossinghoff, Small Salem Numbers
- William J. Floyd, Growth of planar Coxeter groups, P.V. numbers, and Salem numbers, Math. Ann. Vol. 293 (1992), 475-483.
Crossrefs
Cf. A143439.
Programs
-
Mathematica
p[x_, n_] = If[n == 0, 1, x^(2*n) - x^(2*n - 1) - x^n - x + 1]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
Maxima
T(n, k) := if n = 0 and k = 0 then 1 else ratcoef(x^(2*n) - x^(2*n - 1) - x^n - x + 1, x, k)$ create_list(T(n, k), n, 0, 10, k, 0, 2*n); /* Franck Maminirina Ramaharo, Nov 02 2018 */
Formula
Sum_{m=0..2*n} T(n,m)= -1.
From Franck Maminirina Ramaharo, Nov 02 2018: (Start)
G.f.: (1 - 4*x*y + x*(2 + x + 2*x^2)*y^2 - x^2*(1 + x^2)*y^3)/((1 - y)*(1 - x*y)*(1 - x^2*y)).
E.g.f.: (-(1 - x)*exp(x^2*y) - x*exp(x*y) + x*(1 - x)*exp(y) + 1 + x^2)/x. (End)
Comments