A175745 Numbers with 35 divisors.
5184, 11664, 40000, 153664, 250000, 455625, 937024, 1265625, 1750329, 1827904, 1882384, 5345344, 8340544, 9529569, 10673289, 17909824, 20820969, 28344976, 37515625, 45265984, 59105344, 60886809, 73530625, 77228944, 95004009, 119946304, 143496441, 180848704
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- OEIS Wiki, Index entries for number of divisors
Programs
-
Mathematica
Select[Range[9000000],DivisorSigma[0,#]==35&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
-
PARI
is(n)=numdiv(n)==35 \\ Charles R Greathouse IV, Jun 19 2016
-
Python
from sympy import primepi, integer_nthroot, primerange def A175745(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,4)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,10)[0])-primepi(integer_nthroot(x,34)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025
Formula
A000005(a(n)) = 35.
Sum_{n>=1} 1/a(n) = P(4)*P(6) - P(10) + P(34) = 0.000320676..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
Extensions
Extended by T. D. Noe, May 08 2011
Comments