cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175745 Numbers with 35 divisors.

Original entry on oeis.org

5184, 11664, 40000, 153664, 250000, 455625, 937024, 1265625, 1750329, 1827904, 1882384, 5345344, 8340544, 9529569, 10673289, 17909824, 20820969, 28344976, 37515625, 45265984, 59105344, 60886809, 73530625, 77228944, 95004009, 119946304, 143496441, 180848704
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the form p^34 and p^6*q^4 (A190464), where p and q are distinct primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[9000000],DivisorSigma[0,#]==35&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
  • PARI
    is(n)=numdiv(n)==35 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A175745(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,4)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,10)[0])-primepi(integer_nthroot(x,34)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 35.
Sum_{n>=1} 1/a(n) = P(4)*P(6) - P(10) + P(34) = 0.000320676..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

Extensions

Extended by T. D. Noe, May 08 2011