A175795 Numbers n such that the digits of sigma(n) are exactly the same (albeit in different order) as the digits of phi(n), in base 10.
1, 65, 207, 1769, 2066, 2771, 3197, 4330, 4587, 4769, 4946, 5067, 6443, 6623, 6989, 7133, 8201, 9263, 11951, 12331, 13243, 16403, 17429, 17441, 21416, 22083, 23161, 24746, 27058, 27945, 28049, 28185, 28451, 29111, 30551, 31439, 32554, 32566, 32849, 33715
Offset: 1
Examples
2771 is in the sequence because sigma(2771) = 2952, phi(2771) = 2592
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
okQ[n_] := Module[{idn = IntegerDigits[DivisorSigma[1,n]]}, Sort[idn] == Sort[IntegerDigits[EulerPhi[n]]]]; Select[Range[40000], okQ]
-
PARI
isok(n) = (de = digits(eulerphi(n))) && (ds = digits(sigma(n))) && (vecsort(de) == vecsort(ds)); \\ Michel Marcus, Dec 13 2015
-
Python
from sympy import totient, divisor_sigma A175795_list = [n for n in range(1,10**4) if sorted(str(divisor_sigma(n))) == sorted(str(totient(n)))] # Chai Wah Wu, Dec 13 2015