cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175812 Partial sums of ceiling(n^2/6).

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 18, 27, 38, 52, 69, 90, 114, 143, 176, 214, 257, 306, 360, 421, 488, 562, 643, 732, 828, 933, 1046, 1168, 1299, 1440, 1590, 1751, 1922, 2104, 2297, 2502, 2718, 2947, 3188, 3442, 3709, 3990, 4284, 4593, 4916, 5254, 5607, 5976, 6360, 6761, 7178
Offset: 0

Views

Author

Mircea Merca, Dec 05 2010

Keywords

Comments

Partial sums of A008747.
There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24).

Examples

			a(6) = 0 + 1 + 1 + 2 + 3 + 5 + 6 = 18.
		

Crossrefs

Cf. A008747.

Programs

  • Magma
    [Round((2*n+1)*(2*n^2+2*n+17)/72): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
    
  • Maple
    seq(floor((n+1)*(2*n^2+n+17)/36),n=0..50)
  • Mathematica
    Accumulate[Ceiling[Range[0,50]^2/6]] (* Harvey P. Dale, Jan 17 2016 *)
  • PARI
    a(n) = (n+1)*(2*n^2+n+17)\36; \\ Altug Alkan, Sep 21 2018

Formula

a(n) = round((2*n+1)*(2*n^2 + 2*n + 17)/72).
a(n) = floor((n+1)*(2*n^2 + n + 17)/36).
a(n) = ceiling((2*n^3 + 3*n^2 + 18*n)/36).
a(n) = round((2*n^3 + 3*n^2 + 18*n)/36).
a(n) = a(n-6) + (n+1)*(n-6) + 18, n > 5.
From Mircea Merca, Jan 09 2011: (Start)
a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7), n > 6.
G.f.: x*(x^4+1) / ( (x+1)*(x^2+x+1)*(x-1)^4 ). (End)