cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175822 Partial sums of ceiling(n^2/7).

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 17, 24, 34, 46, 61, 79, 100, 125, 153, 186, 223, 265, 312, 364, 422, 485, 555, 631, 714, 804, 901, 1006, 1118, 1239, 1368, 1506, 1653, 1809, 1975, 2150, 2336, 2532, 2739, 2957, 3186, 3427, 3679, 3944, 4221, 4511, 4814, 5130, 5460, 5803, 6161
Offset: 0

Views

Author

Mircea Merca, Dec 05 2010

Keywords

Comments

Partial sums of A036405.

Examples

			a(7) = 0 + 1 + 1 + 2 + 3 + 4 + 6 + 7 = 24.
		

Crossrefs

Cf. A036405.

Programs

  • Magma
    [&+[Ceiling(k^2/7): k in [0..n]]: n in [0..50]];  // Bruno Berselli, Apr 26 2011
    
  • Maple
    seq(round((2*n+1)*(n^2+n+12)/42),n=0..50)
  • Mathematica
    Ceiling[Range[0,50]^2/7]//Accumulate (* Harvey P. Dale, Apr 12 2018 *)
  • PARI
    a(n)=(n+1)*(2*n^2+n+24)\42 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = round((2*n+1)*(n^2 + n + 12)/42).
a(n) = floor((n+1)*(2*n^2 + n + 24)/42).
a(n) = ceiling((2*n^3 + 3*n^2 + 25*n)/42).
a(n) = a(n-7) + (n+1)*(n-7) + 24, n > 6.
From R. J. Mathar, Dec 06 2010: (Start)
G.f.: x*(1+x)*(x^2 - x + 1)*(x^4 - x^3 + x^2 - x + 1) / ( (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-7) - 3*a(n-8) + 3*a(n-9) - a(n-10). (End)