cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175850 Numbers m with property that m-th triangular number is a sum of divisors of some k-th triangular number (A175849).

Original entry on oeis.org

1, 13, 12, 384, 575, 783, 4095, 4607, 4095, 6912, 12543, 13824, 16895, 21504, 20735, 27264, 40959, 68256, 76544, 104832, 175104, 130559, 146432, 180224, 129024, 202239, 316224, 328320, 372735, 395199, 512000, 532575, 512000, 732159, 787968, 1181439, 1756160, 2253824
Offset: 1

Views

Author

Zak Seidov, Sep 27 2010

Keywords

Examples

			Some pairs of k,m: 1,1; 8,13; 9,12; 215,384; 458,575; 520,783; 2232,4095; 3251,4607; 3634,4095; 5349,6912; 9489,12543; 10051,13824.
		

Crossrefs

Cf. A000203 (sigma(n) = sum of divisors of n), A000217 (triangular numbers), A175849 (corresponding values of n).

Programs

  • Mathematica
    f[n_] := Sqrt[8*DivisorSigma[1, n*(n+1)/2] + 1]; (f /@ Select[Range[10^4], IntegerQ @ f[#] &] - 1)/2 (* Amiram Eldar, Feb 23 2020 *)
  • PARI
    {for(n=1, 10^7, m=sigma(n*(n+1)/2); issquare(d=1+8*m) && print1((sqrtint(d)-1)/2, ", "))} \\ edited by Michel Marcus, Feb 23 2020

Formula

sigma(T(k)) = T(m); A000203(A000217(k)) = A000217(m).

Extensions

Data corrected and extended by Amiram Eldar, Feb 23 2020

A317478 Triangular numbers whose sum of divisors is an oblong number.

Original entry on oeis.org

6, 28, 55, 496, 666, 780, 1540, 2145, 6441, 6903, 8128, 15051, 21736, 36585, 44551, 232903, 234955, 644680, 2258875, 3186550, 3462396, 6211050, 22174470, 33550336, 48437403, 62591266, 107538445, 134898525, 153554050, 624157446, 1309312378, 1339937028
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2018

Keywords

Comments

Includes all the even perfect numbers.
The indices of these triangular numbers are 3, 7, 10, 31, 36, 39, 55, 65, 113, 117, 127, 173, 208, 270, 298, 682, 685, 1135, 2125, 2524, 2631, 3524, 6659, 8191, 9842, 11188, 14665, 16425, 17524, 35331, 51172, 51767, 52019, 52486, 58993, 65585, 97532.
The indices of the corresponding oblong numbers are 3, 7, 8, 31, 38, 48, 63, 63, 95, 104, 127, 144, 224, 255, 224, 512, 575, 1215, 1728, 2448, 3072, 3968, 7695, 8191, 9215, 9792, 12159, 15872, 17576, 37296, 46656, 58239, 63855, 40959, 46080, 62720, 102960.
Number of terms < 10^k, k=1,2,3...: 1, 3, 6, 11, 15, 18, 22, 26, 30, 40, 52, 64, 80, 90, 110, 128, ..., . - Robert G. Wilson v, Jul 31 2018

Examples

			55 is in the sequence since sigma(55) = 72 = 8 * 9 is an oblong number.
		

Crossrefs

Intersection of A000217 and A236387. - Michel Marcus, Jul 30 2018

Programs

  • Mathematica
    tri[n_] := n(n+1)/2; aQ[n_] := IntegerQ[Sqrt[4 * DivisorSigma[1, tri[n]] + 1]]; tri[Select[Range[52000], aQ]]
    Module[{nn=60000,obno},obno=Table[n(n+1),{n,nn}];Select[Accumulate[Range[nn]],MemberQ[ obno,DivisorSigma[1,#]]&]] (* Harvey P. Dale, Aug 26 2024 *)
Showing 1-2 of 2 results.