A176111 Honaker primes of the form p = 2*k-1 with sum-of-digits(p) = sum-of-digits(k).
4357, 6301, 6553, 7741, 8011, 12277, 13339, 14437, 14923, 16273, 18307, 24733, 26731, 27091, 34471, 34543, 35227, 36217, 36307, 36433, 36523, 37783, 41491, 41851, 41941, 42373, 43543, 45181, 47017, 49411, 52543, 53407, 54217, 55207, 57943, 58321, 58411, 64513
Offset: 1
Examples
p = 2719 = prime(397) has digit sum 19, but k = 1360 has digit sum 10, which yields no term. p = 6301 = prime(820) with k = 3151, digit sum 10, is the 2nd term. p = 10711 = prime(1306) with digit sum 10, but k = 5356 has digit sum 10: no contribution to the sequence. p = 57943 = prime(5869) with k = 28972 have common digit sum 28 and p is in the sequence.
References
- M. du Sautoy: Die Musik der Primzahlen: Auf den Spuren des groessten Raetsels der Mathematik, Beck, 4. Auflage, 2005
Extensions
4137 replaced by 4357, 8821 removed, Extensive list of auxiliary prime indices reduced - R. J. Mathar, Nov 01 2010
Comments