A176013 Triangle, read by rows, T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
-1, 2, 1, -6, -9, -1, 24, 72, 24, 1, -120, -600, -400, -50, -1, 720, 5400, 6000, 1500, 90, 1, -5040, -52920, -88200, -36750, -4410, -147, -1, 40320, 564480, 1317120, 823200, 164640, 10976, 224, 1, -362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1
Offset: 1
Examples
Triangle begins as: -1; 2, 1; -6, -9, -1; 24, 72, 24, 1; -120, -600, -400, -50, -1; 720, 5400, 6000, 1500, 90, 1; -5040, -52920, -88200, -36750, -4410, -147, -1; 40320, 564480, 1317120, 823200, 164640, 10976, 224, 1; -362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1;
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Crossrefs
Cf. A008297.
Programs
-
Magma
[(-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 08 2021
-
Mathematica
T[n_, k_] = (-1)^n*n!/(k*k!)*Binomial[n-1, k-1]*Binomial[n, k-1]; Table[T[n, k], {n,12}, {k,n}]//Flatten
-
Sage
flatten([[(-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 08 2021
Formula
T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
T(n, k) = binomial(n+1, k) * A008297(n, k)/(n+1). - G. C. Greubel, Feb 08 2021
Extensions
Edited by G. C. Greubel, Feb 08 2021
Comments