cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176025 Series reversion of eta(-x) - 1.

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 169, 603, 2205, 8217, 31095, 119185, 461790, 1805810, 7117865, 28250549, 112806534, 452862663, 1826705940, 7399893522, 30092189864, 122799412699, 502709227763, 2063939448400, 8496355807149, 35061664792175
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2010

Keywords

Comments

eta(q) is the Dedekind eta function without the q^(1/24) factor (A010815).

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 49*x^6 +...
eta(-x)-1 = x - x^2 - x^5 - x^7 - x^12 + x^15 + x^22 + x^26 +...
eta(-x)-1 = Sum_{n>=1} (-1)^[n/2]*x^(n(3n-1)/2)*(1 + (-x)^n).
		

Crossrefs

Cf. A010815.

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(26, proc(n) 24*n + 1; if issqr(%) then sqrt(%); (-1)^(n + irem(iquo(% + irem(%, 6), 6), 2)) else 0 fi end); # Peter Luschny, Oct 05 2022
  • Mathematica
    -InverseSeries[Series[QPochhammer[x], {x, 0, 20}]][[3]] (* Vladimir Reshetnikov, Nov 21 2015 *)
  • PARI
    a(n)=polcoeff(serreverse(-1+eta(-x+x*O(x^n))),n)

Formula

G.f. A(x) satisfies: eta(-A(x)) = 1 + x, or, equivalently:
x = Sum_{n>=1} (-1)^[n/2] * A(x)^(n(3n-1)/2) * (1 + (-A(x))^n).
a(n) ~ c * d^n / n^(3/2), where d = 4.37926411884088478340484205014088510... and c = 0.422672515444252849172886523421828... - Vaclav Kotesovec, Nov 11 2017