cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176060 a(n) = n*(n+1)*(3*n^2+5*n+4)/12.

Original entry on oeis.org

0, 2, 13, 46, 120, 260, 497, 868, 1416, 2190, 3245, 4642, 6448, 8736, 11585, 15080, 19312, 24378, 30381, 37430, 45640, 55132, 66033, 78476, 92600, 108550, 126477, 146538, 168896, 193720, 221185, 251472, 284768, 321266, 361165, 404670, 451992
Offset: 0

Views

Author

Bruno Berselli, Dec 06 2010

Keywords

Comments

Antidiagonal sums of the convolution array A213821. [Clark Kimberling, Jul 04 2012]

Examples

			For n=5, a(5)=1*(1*0+6)+2*(2*1+6)+3*(3*2+6)+4*(4*3+6)+5*(5*4+6)=260.
		

References

  • "Supplemento al Periodico di Matematica", Raffaello Giusti Editore (Livorno), May 1908, p. 111 (Problem 923).

Crossrefs

Cf. A213821.

Programs

  • Magma
    [n*(n+1)*(3*n^2+5*n+4)/12: n in [0..40]]; // Vincenzo Librandi, Jul 02 2011
  • Mathematica
    Table[n(n+1)(3n^2+5n+4)/12,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,2,13,46,120},40] (* Harvey P. Dale, Jul 14 2011 *)

Formula

G.f.: x*(2+3*x+x^2)/(1-x)^5.
a(n) = sum(k*(k*(k-1)+n+1), k=1..n) with n>0 (summation proposed in the Problem 923, see References).
a(0)=0, a(1)=2, a(2)=13, a(3)=46, a(4)=120, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Jul 14 2011
a(-n) = A132117(n-1) with A132117(-1)=A132117(0)=0. - Bruno Berselli, Aug 22 2011